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Abstract

A model of quark mass matrices from six dimensions, which is nearly democratic in nature and
which is previously constructed by two of us (PQH and MS), is studied in detail in this manuscript.
We found that not only it fits all the six quark masses as well as the CKM matrix but also that there
exists a region in the allowed parameter space of the model where the constraint on the p@rameter
of the strong CP problem is satisfied. This region itself puts a constraint on the CKM Parameters
andi. As such, through our analysis, there appears to be a deep connection between strong and weak
CP in this model.
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1. Introduction

The search for a plausible model of fermion masses is a continuing quest in particle
physics. In particular, the quark sector iseatfle ground to test various models since it
is there that one has the largest amount of information: quark masses, CKM angles, CP
phase, and it is in this sector that most models turn their attention to.

Two of us have recently constructed a model of fermion magke# which the
mass matrix is almost of the pure phase form and is constructed out of four plus two
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extra compact spatial dimensions. As showifilih one extra compact spatial dimension
was needed to give a democratic mass matrix and another one was needed to make its
matrix elements complex. Iji], an almost pure phase mass matrix was found to take the
form M = gyv/v/2(1— 0;;) expib;;) with i, j = 1,2, 3, 0;; < 1, andd;; < 1, although

Ref. [1] contains a more general result. Our motivation for that work was based on an
attempt to give a theoretical basis for the so-called pure phase mass matrix (PPMM) ansatz
(similar to the previous form but witl;; = 0) of Refs.[2,3] which, at the time of its
construction, was quite successful in fitting the various angles and masses. In so doing,
we arrived at a mass matrix which contains the pure phase form as a particular limit. As
we shall see below, the general result of H&i. allows us to be able to fit the latest
determination of the CKM elemen{d]. Along the way, as stipulated in Refl], we

found a special region, in the allowed parameter space that fits the CKM matrix, where
the parametef of the famous strong CP problem can be found to satisfy the experimental
boundé < 10~°. This result is somewhat surprising since it is not at all evident that
solutions of our model that fit the mass spectrum and the CKM matrix could also give
values ofd below the experimental bound. This connection between weak and strong CP
is certainly very intriguing and will be the subject of our focus at the end of the paper.

The organization of the paper will be as follows. We first briefly review the construction
of a democratic mass matrix (DMM) in five dimensions. We then summarize the salient
points of the model of Refl]: its construction in six dimensions and the resulting quark
mass matrices. Next we enumerate and dlescthe parameters used in the numerical
analysis of the mass matrices which is cadrbut in the section that follows. There we
will show the allowed region in our parameter space where solutions are found to fit both
the mass spectrum and the CKM matrix. Finally, we discuss a subspace in the allowed
region where the bounél < 102 is obeyed. In particular, we present some thoughts on
the possible physics which might be responsible for this behaviour.

2. Democratic mass matrices from five dimensions

Before discussing the results of R§f], let us first review how a democratic mass
matrix (DMM) [5] arises in the case with one extra compact dimension. A DMM
is a special case of an almost PPMM with; = 0, 6;; = 0, namely one in which
all matrix elements are unity, apart from a common factor, and hence the name
“democratic”. As described ifi], in order to obtain a democratic mass matrix and to avoid
unwanted Flavour-Changing Neutral Current processes (FCNC), we imposed the following
permutation symmetries on the acticf ® 5§ ® s2°, with 0 — 5% 0, U° — sY U*
and D¢ — S:?C D¢. Q(x%,y), U(x*,y), D°(x%, y) are the five-dimensional Dirac fields
whose left-handed zero modes are given, respectively; (BY), u%(x*), anddy(x*).

(For convenience, left-handed fields are used througii¢aind in this paper with the last
two fields representing actually the two quaé8ld(2); singlets.) The extra dimension is
compactified on a§1/Z, orbifold. The action which obeys this permutation symmetry is
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the sum of two terms§p and Syyk, where
So = fd5x 0i(iPs+ fo () Qi + Uf (iPs+ fo(y) — my)Uf
+ D (iPs+ fd(y) —mp) Dy, (1)
Syuk = / d°cky Y O CsH Y US + / dxkp Y QI CsAY DS +he.  (2)
i J i j

In Eq. (1) Ds is the covariant derivative. (The gauge fields are supposed to be
uniformly spread along the fifth dimension inside the thick brane.y(y)é;; is the
vacuum expectation value VEV for the background scalar fie{d“, y). The attractive
proposal of[ 7] to localize chiral zero modes at different points along the extra dimension
y was adopted ifil]. As a resultyny andmp are the five-dimensional “masses” which
determine the locations of}, (x*) anddy(x*) alongy. (As pointed out in Ref[1], in
order to have an invariant “mass term” under thg symmetry, one has to require a
“mass reversalin — —m. The behaviour ofn underZ, could come, for example, in
a model where the “masses” are generdigdhe radiative corrections to the VEM(y),
¢ (y) — ¢(y)+38¢ with §¢ being independent of. Becaused (x*, y) - —®(x%, Ls—y)
underZ, symmetry, at the same tind® — —38¢ originating in this “mass reversal”.) In
Eq. (2)ky andkp are the Yukawa couplings in five dimensions which have been chosen
real and flavor independent aif(x“, y) is the five-dimensional SM doublet Higgs field
whose zero mode(x®) is assumed to be uniformly spread alonmside the thick brane.
HereCs = yoy2yy is the charge conjugation operator in five dimensions.

For the purpose of keeping track of the dimensionalities of various objects, let us remind
ourselves that, in five dimensions, the Yukawa couptindnas a (mass) dimensiaf—1/2,

A scalar field, in five dimensions, has a dimensk#/ 2. The zero mode of the SM Higgs
field can be written ak h(x*) whereh(x?*) is the usual 4-dimensional Higgs field with
dimensionM, and therefore the constaiit has a dimensiorM /2. In dimensionally
reducing the above action to four dimensions, the following dimensionless combination
appears in the Yukawa term:

gru=kukK. (3

The effective action for the Yukawa term of thg sector in four dimensions can now
be written as

S\e(ffk=/d4xgy,uZ%T(X"‘)h(xa)c“j(x“)fdyécj(y)él{c(y)+h.c., )
i

where a similar expression holds for the Down sector. As stressed ifilRefince all the
gi’s are located at the same place inside the brane, and similarly for alf t1éThe wave

function overlap/ dy E(j (y)gbf} (y) isindependent of, j. The Yukawa action now becomes

1 1 1
SS9k = / d*x g8t g " (x*)h(x*) <1 1 1) Cu(x*) +h.c, (5)
1 1 1
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whereg$" is given by

ot =an [ dyE, 080, (6)
and similarly for the down sector
= ora [ dve (e ). @)
FromEqg. (5)one obtains the democratic mass matrix (DMM)
v 11 1
vy )

which has eigenvaluesggv/+/2, 0, 0, withv ~ 246 GeV. The DMM ofEg. (8) does

not reproduce the right mass spectrum and the right CKM matrix. What has been shown in
Ref.[1] is that by adding another compact extra dimension one can obtain a viable scenario
represented by an almost-PPMM.

3. Almost pure phase mass matricesfrom six dimensions
3.1. Theaction

The main idea of Ref[1] is that by introducing a sixth compact extra dimension,
and by requiring that the background scalar field couples to the fermions through a
Yukawa interaction which is non-local along that extra dimension, one can obtain an
oscillatory behavior for the fermion wave function along the sixth dimension. Fermions
are delocalized along the sixth dimension, in contrast with the fifth dimension, and the
oscillatory behavior of the wave functions, together with the breaking of family symmetry,
has the effect of producing phases in the mass matrix. Let us nhow summarize the main
results obtained in Refl]. We first rewrite more compactly the action given in Réf.
which is the sum oy and Syux where

So = /d6X[Qii¢6Qi + Qi(z)<£¢i(2) - mg’i>Qi(L6 —2)

— Qi(Lg — Z)(g(ﬁi (2) — mZQl ) Qi (2) + UfiPeUf

!
2

i (2) — m;’

+Uf(z)( )Uf(Le—z)

~Uf(Le— Z)(%‘ﬁi(z) - mg’i>Uf(Z)

+ DfiPpeD; + Df (z) (g‘ﬁi (2)— %) Di (L6 —z)
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mp,i

2

_DiC(LG_Z)<£¢i(Z) — )Df(z)+f/QiF7¢/(y)Qi

+ U T7(f'¢' (v) —mu)US + DiT7(f'9' (v) — mD)D;}, 9)

and

Syuk = / dky Y OF CeH Y US + / d®kp Y OF CeH Y DS +h.c.,
1 1
J J (10)

whereCe = I'oI 21 is the charge conjugation in six dimensions. (The gamma matrices in
six dimensions can be obtained in Rfl.) In Eq. (9)we expressed the dependence from
z only for the non-local interaction terms. The important point here is that while these
interactions will produce an oscillatory behar for the fermion wave functions along the
sixth dimensions, the local terms, which are built usikgare found to be responsible for
localizing the fermions along the fifth dimension. The above actions are invariant under
the family permutation symmets? @ SY¥° @ S2°.

The vacuum expectation values (VEV) for the background scalar fieldead @’ are
given by

$1(z) O 0
(‘P(xo’,y,z))=( 0 ¢22) O ) (11)
0 0 ¢3(2)
and
) 0 0
(¢’(x“,y,z))=< 0 ¢» O ) (12)
0 0 ¢'(»

As in Ref.[1], the family symmetry is broken by the background scalar figla)s;;
and by introducing different non-local “mass terms, ;, my ; andmp ; for each family.
To break the family symmetry together with the left right symmetry along the sixth
dimension will allow us to reproduce the right mass spectrum and the right CKM matrix.
As shown in Ref[1], the absence iEq. (9)of local interactions of the fornw @ v,
which will localize the fermions wave function along the sixth dimension, is obtained by
introducing the discrete symmetgy

Y (x 2) = QY (x¥, 2) = Iy (x%, 2),

¥ (x* Le—z) > Q¥(x% Le —2) = —I7¢(x%, Le — 2).

D(x%,z) > QP (x%, 2) = D (x%,2). (13)
As pointed out in Ref[1] the realization of the)-symmetry ofEq. (13)implies that the
introduced orbifold for the compactification §/(Z2 x Z5) instead 0fS1/Z>. This also
implies that the physical spacel[i3, Lg/2] instead of the initial suppot0, Ls]. The non-

local terms ofEq. (9) and the local terms containinfy; are invariant under the above
Q-symmetry.
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3.2. The mass matrix

From the Yukawa action oEg. (10)one can now obtain the effective action in four
dimensions

Sitk= [t ra Yoal () o) [y ey )
ij

X / dz &5 ()€ o (2) + hc., (14)

where we considered only the up sector, but equal considerations hold for the down sector.
UsingEgs. (5) and (6pne can rewrites\%fk as

ail diz di3s

S$ijfk :/d4x g?,ffun(xa)h(xa) <021 az2 azs) Cuc(xa) + h.c., (15)
azl dazz ass3

where
aij = / dz &5 (€, (2)

Lg
— Lie /dz exp[—i (2f ViIn(cost(uiz)) /i — 2/ VjIn(coshiu;2)) /n;
0

—(mg,i — mu,j)Z)]- (16)

In Eq. (16)we have used fafg . andg; ., respectively,

: 1

£, = = expli (2f Vi In(coshuiz)) /i —mq.iz)], 17)
. 1

E6.uc = NI expi (2/ Vi In(coshy;2)) / i —mu.iz)], (18)

which correspond to a VEV; (z) = V; tgh(u; z) with u; = /A/2V;.
As pointed out in Ref[1], Lg is now a generic symbol for the length of the physical
space, which id.g/2 for the orbifoldS1/(Z2 x Z5). FromEq. (14)one obtains the mass

matrix
ai1 aiz ais
a1 az a3 |. (19)

azl dzz dass

ff v
M=8§,u\/—§

Following Ref.[1], if one now uses the linear approximation for the kink, which is valid
for 1/u; ~ O(Ls), all domain wall thicknesses alongare of the size of the compact

dimension, one can obtain for the elememtsthe form (1 — gij)eieif with ¢;; « 1 and
0;j < 1. In the linear approximation for the kink one obtains the following expressions
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for aij
1
@ =7 /dz exp[—i (ApZz® — Amjj)]. (20)
0
where
1
M = 5 @f Vit = 2f Viu)), 1)
Amij=mg ;i —my,;j. (22)

As shown in Ref[1], one can explicitly carry out the integration and obtain

i (2ARZ Lg—Am;; N
erf(l( 121,., 6 . m/)) + erf<21Am,.,2 ) ,
T AR AR Am::
aij = v ! ! exp(i( i) ) (23)

2
2 finu? L AAui;

Now if /A[LiszG =x;j < LandAm;; =<1 one can expan#g. (23)giving

2
xl.j

2 1 1 A Vi
ajj = (1— 4—5fo - 2_4)’,2/ + 1—2xl~2jyij> exp(z (% - ?>> +O(x?j,yfj), (24)

which has the desired almost-PPMM form. It has to be stressed here that the expression
for the mass matrix which has been used to make our numerical simulation is the one from
Eqg. (16) This implies that when we looked for a solution in the parameter space, we did
not have to restrict ourselves to the particular range of values for the parameters where both
the linear approximation for the kink arftly. (24)were valid.

As pointed out in Ref[1], by looking atEgs. (19) and (16pne can make the
important following consideration. If one introduces the same “mass” terteff@ndright
components for each family which means thatw, ; = m,; (and similarlym, ; =mgy
for the Down sector), then the mass matrix&af. (19)is Hermitian, i.e.,a;; = a7;. In this
particular case the mass matrices for the up and down sectors differ only by the Yukawa
couplings and one will not be able to reproduce a realistic mass spectrum. Moreover the
diagonalization matrices are the same, \g.= Vp, andVckm = VJ Vp becomes just the
unit matrix. So in order to obtain a realistic mass spectrum and CKM matrix one needs to
introduce different “mass” terms féeft andright components at least for one sector. What
will be shown in the following is that we will be able to reproduce the right mass spectrum
and the right CKM matrix for the case in which both up and down mass matrices are not
Hermitian. While Hermitian mass matrices do not give a realistic scenario, they have the
important property of having a real determinant. This implies that the argument of their
determinantis zero. As pointed out[i, this fact could form the seed for a solution to the
strong CP problem.
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4. Description of the parameter space

In this section we are going to describe the parameter space for the model §f]Ref.
The particular case we consider has 10 parameters. What has to be said here is that we
started our numerical simulation considericases with a higher number of parameters
and only after examining the results obtained, we were able to reduce the parameter space
to 10. This, by the way, is the same number of parameters found in the quark sector: six
masses and four CKM parameters. The 10 pa&tans we are considering are the following:

o g8 andg", defined, respectively, bigs. (6) and (7)

e 11, u2 andusz whose inverses give the thickness of the domain walls), ¢2(z) and
¢3(z) of Eq. (11)

o g41=mg1/A/2/2f ande, 2 = my 24/A/2/2 f with m, 1 the “mass” term for the 1st
family left component andz,, » for the 2nd and 3rd family left components;

o g,2=my2JA/2/2f ande, 3 =m, 3/A/2/2f the “mass” term respectively for the
2nd and 3rd family right components, 1 = 0;

o Ac being the common split im/A/2/2f of g4 ; = &,.; — Ae with respect te,, ;.

As can be seen from the particular choice of parameters the background scalar potential
does not break the left-right symmet§ = ¢" = ¢¢ but on the other hand breaks the
family symmetry¢; # ¢;. The left—right symmetry is broken by choosing; # &,.4.i
and by choosing different; for different indicesi one breaks additionally the family
symmetry. The choice, 3 = ¢,,» comes from the analysis of the same model in the case
of 11 parameters, where all thg; were different, and which gave as a resylg >~ ¢, ».

5. Resultsfor mass matrices from six dimensions

In this section we will present the results ainted for the parameter space and for the
guantities ofTable 1

We should point out that each solution that we found corresponds to a point in the
parameter space with all the fitted quantitiesTable 1being in the experimental range
[4,8]. In Figs. 1, 2 and 3ve give the masses of the 6 quarks in GeV evaluated at the
My scale for three different cases corresponding to three different rangegdéiify —
argdetM,) +argdetMy). It will be clear in the next section why it is interesting to look at
the quantity argdetM) when we present a scenario for a possible solution to the strong CP
problem. We choose to evaluate the running massgg.) at the scale. = M7, because
the CKM matrix parameterii,’is?K'\’I are given aju = Mz. This is a common approach for
guark mass matrix phenomenology. See [giffor a review of the running masses and the
renormalization group equation that describes the evolution of the running quark masses
mq () with the scalguw. The edges of each box Kigs. 1-3give the uncertainties for the
masses, which depend not only on the errothefnput parameters for the renormalization
group (RG) equation, but also on the error of the parameter which governs the flow itself,
i.e., the strong coupling; (Mz).
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Table 1

Central values and uncertairgidor the masses of the 6 quarks
evaluated atV/,, for the two ratiosm, /mg andmg/mgy, for the
absolute values of the CKM matrix elements, the CP parameteres

0,1, sin28 andy

X (x;) |xMax _ ymin| /2
My 2.33x 1073 0.45x 1073
me 0.685 Q061

my 181 13

mg 469x 103 0.66x 103
my 0.0934 00130

mp 3.00 011
my/mg 0.497 Q119
mg/mgy 199 39

[Vial 0.97485 000075
[Vius | 0.2225 00035
[Vup| 0.00365 000115
[Veal 0.2225 00035
[Ves| 0.9740 Q0008
[Vebl 0.041 Q003

[Vial 0.009 Q005

[Vis] 0.0405 00035
[Vipl 0.99915 000015

F 0.22 010

i 0.35 005

sin 28 0.78 008

y 5% 13°

In the following we present two numerical examples corresponding, respectively, to
argdetM) ~ O(1) and argdetM) < 2 x 1019, For each numerical examples we will
also give the corresponding parameter space. Below we rewrite the expression for the mass
matrix to make clear the role of each parameter.

Mij; = 8Yeff% / dz&g!, (6] e (2)

v 1 A
— ove—=—— expf —i2 ‘/_)
8YeﬁﬁL6 p( S 2

Lg

X /dzexp[—i(ln(cosf(uiz)) —In(cosh(ijz)) — (eq.i —€u.j)z)].  (25)
0

whereeg i = mg ui/A/2/2f with p; = /A/2V;. In our numerical simulation we will
ignore the phase factor expi2 f/A/2) in Eq. (25) which is independent of the indices
i, j. All results correspond td.g = 1.

One word of caution is in order here. In comparing our results with the phenomenolog-
ical extractions of the CKM matrix elements, we take into account the following points.
(1) The magnitudes o¥,;, andV,,, are obtained frontree-level decays and are to a very
good approximation indepenilieof contributions frommew physics. (2) If one were to use
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Fig. 1. Solutions for the 6 quark masses corresponding tot 10 | arg(detM)| < 5 x 101, The masses in
GeV are evaluated at the, scale. The range for each mass as givelahle lis defined by the edges of the
corresponding window.

the unitarity triangle parametefsandn for comparison, one has to assume that possible

new physics contributions (through loop effects for example) conspire to bring the apex

(p, n) of the unitarity triangle to within the allowed band of the “unitarity clock”. In the

following we will use both points 1 and 2 to make our comparisons with experiments.
First, we give a numerical example corresponding to the cageletd) ~ O(1). In

Egs. (26)—(30yve give the parameters space for the first case

u1=7.378  u»=8460  u3=8531 (26)
£s1=—8262  £,,=5090 &,3=>5.090, (27)
£,1=0.000,  £,=1120  &,3=1198 (28)
eq1=—2.044,  g0=-0924  ¢43=—0.846 (29)
gruv/V2=15231,  gysv/v2=2448. (30)

We have decided to present the parametacspn a more readable way but it is important
to remember that the number afdependent parameters is 10.Hgs. (31) and (33)ve
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Fig. 2. Solutions for the 6 quark masses corresponding t& 10| arg(detM)| < 10~1. The masses in GeV are
evaluated at tha/, scale. The range for each mass as giveFainle lis defined by the edges of the corresponding
window.

give the numerical expressions for the up and down quark mass matrix for the first case and
in Egs. (32) and (34the corresponding mass eigenvalues. As one can see, the elements of
the mass matrices, although not equal to eabkroih magnitudes, are of the same order,
revealing their democratic origins
M, =15231 GeV
0.1111+0.1690 —0.1937—0.4167 —0.1852—0.4377
X (0.1039+ 0.1750 —0.1857—0.422% —0.1765—0.4430 |, (31)

0.1031+0.1758 —0.1846—0.4238 —0.1753— 0.4446
m, = 0.0023 GeV m. =0.624 GeV, m; = 1830 GeV, (32)

Mg =24.48 GeV
—0.0105+ 0.0003 —0.0424—0.0086 —0.0544—0.012%
x | —0.0090+ 0.004% —0.0442—0.0060 —0.0563—0.0099 |,

—0.0081+ 0.0043 —0.0451—0.0060 —0.0572— 0.0100
(33)
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Fig. 3. Solutions for the 6 quark masses corresponding t0-4@ | arg(detM)| < 2 x 10-19. The masses in
GeV are evaluated at the, scale. The range for each mass as givelahle lis defined by the edges of the
corresponding window.

mq = 0.0048 GeV

mg =0.081 GeV,

mp = 3.09 GeV. (34)

In Egs. (35) and (36)ve also give the absolute values of the mass matric&s)sf (31)
and (33)which show thabreaking the family symmetry does not destroy completely the
democratic structure of the mass matrices

M, =15231 GeV(

M, =24.48 GeV(

0.2023 04595 0475
0.2035 04611 04768], (35)
0.2038 04622 Q4780

0.0105 Q0432 Q055
0.0099 Q0446 Q057
0.0092 Q0455 Q058

;) : (36)

In Egs. (37) and (38)ve give the absolute values of the mass matriceEqs. (31)
and (33)with rescaled values of the matrix elemerisgs. (37) and (383how in a more
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explicit way that the deviations from a democratic mass matrix are(df O

0.4232 09614 Q994
M, =7280 GeV (0.4257 09647 09976,
0.4264 Q9671 10000

(37)

0.1807 Q7446 Q9601
My, =142 GeV (0.1702 Q7675 09836) . (38)
0.1584 Q7836 10000

In Eq. (39)we give the CKM matrix corresponding to the mass matriceEqs. (31)
and (33) in Eq. (40)its absolute value, and ikgs. (41) and (42}he values for the
parameterg andi, and for sin 3 andy .

0.9711—-0.0884 0.0930—0.2014 —0.0036+ 0.001Q
Vekm = <—0.1185— 0.1872 0.9734—0.0392 —0.0144+ 0.0398) ., (39
0.0095—-0.0064 0.0150+4 0.0380  0.9986+ 0.0302

0.9751 02218 Q003

Vekm = <0.2215 09742 00423, (40)
0.0423 00409 0999

5=018  7=0.35 (41)

sin28=0.72,  y =632° (42)

with o and# being defined as
2

p=Re(Vua Vi, Vg Ver) [ |Vea V| (43)
7= 1M (Vaa Vi VigVe) [ | Vea Vi | (44)
and sin B andy as
sin28 = (12j(;-);-f)ﬁ2’ (45)
y =90° — o sin‘l(_zzi) (46)
7 2+

In Eq. (47)we give the values for the aetM,, ), argdetM,) and for their sum
argdetM,) = —1.5692 arg(detM,) = 1.8643 argdetM) =0.2951
(47)

The following numerical results corresponding to a value ofdegV) < 102 are
presented in the same way as the above example

u1=7.365  up=8456  u3=8532 (48)
£g1=-8189  £,,=5026  £,3=5026 (49)
£41=0000,  e,=1105  e,3=1.188 (50)
ea1=—2274  eqp=—1168  e43=—1.085 (51)

gruv/N2=14463,  gyqv/~2= 2360, (52)
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M, = 14463 GeV

0.1154+0.1622 —0.1846—0.4383 —0.1740—0.4608
X (0.1096+ 0.1662 —0.179—0.4367%7 —0.1683— 0.459]1') . (53)
0.1090+0.167G —0.1781-0.4382 —0.1671—-0.4606

m, = 0.0028 GeV m. =0.621 Ge\, m; = 1779 GeV, (54)
My =23.60 GeV

—0.0609+0.0113 —-0.0167—0.0046 —0.0294— 0.0063
X <—0.0630+ 0.0148G —-0.0144—0.0006 —0.0272— 0.0025) ,
—0.0622+0.0147% —0.0152—0.0005 —0.0280— 0.0024

(55)

mg = 0.0047 GeV mg = 0.105 GeV, mp =2.9 GeV, (56)
0.1990 04756 04925

M, = 14463 GeV(O.1991 04720 04889) , (57)
0.1994 04730 04899

0.0619 00173 Q0301
M, = 23.60 GeV(0.0647 00144 ooz7i>, (58)
0.0639 00152 0028
0.4042 Q9656 1000
M, =7123 GeV(O.4043 09583 09927), (59)
0.4049 Q9604 09948
0.9568 02676 04655
M, =153 GeV ( 1.0000 02229 04223) , (60)
0.9873 02350 04346
—0.9681+0.115F —0.1707+0.1425  0.0038+ 0.001%
VekM = < ~0.1879-0.1183 09741— 0.01456 —0.0078+ 0.0384'), (61)
0.0068— 0.0096  0.0082+0.0367  0.9991+ 0.0126

0.9750 02223 Q004
Vekm = <0.2220 09743 Q0392], (62)
0.0118 Q0376 0999
0 =0.31, n=0.32, (63)
sin28 =0.77, y =46.3°, (64)

argdetM, ) = —1.55845421528 argdetM,) = 1.55845421485
arg(detM) = 4.3 x 1010, (65)

In Figs. 4, 5 and Gve give the absolute values of the CKM matrix elements for the three
different cases corresponding to three different ranges qflatdyy). The uncertainties

for each element are given by tkeeges of the corresponding windoiig. 8 shows the
solutions forp and#. The sharp edges for the solution patches are due to the constraints
imposed onp and 5. Fig. 9 shows instead the solutions for sifizand y. It has to

be said here that the solutions appear itcpas because of the walge minimization
process works. One obviously cannot exclude other solution patches. For example, could
we try to make the minimization process follow different paths by toying with the input
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Fig. 4. Solutions for the absolute values of the CKM elements corresponding fo< Parg(detM)| < 5x 1071,
The range for each element as givermable lis defined by the edges of theroesponding window. The ranges
delimeted by the dashed lines correspond to the new evaluatiohg,fdr(region on the left of the dashed line),
|Vup| @andV,;, as in Ref[4].

parameters, temperature and number of iterationsAppendix A), and by changing the
initial conditions.

The parameter space with thé fjarameters described iretprevious section and which
corresponds to the three different cases for the three different ranges(détarg, are
given inFigs. 10, 11 and 13t has to be said here that the solutions presented correspond
to a two step procedure. First we find solutions by requiying 12 and u3 to be larger
than unity, because one can use in the physical sfiade;] the kink solution forg; (z)
instead of the kink—antikink approximate solutigrigh(u.z) tgh( (Le — z)) [6] (the kink—
antikink solution has the property of vanishing at both orbifold fixed ppiat0O andz = Lg
as required by the imposed boundary conditions to compactify ofijA#d> orbifold).
Second, using initial conditions from the pareter space already found, we looked for
solutions which correspond to very small rangegof 12 andus. The reason we did this
is because we noticed that the parameters which were more relevant to fit the quantities
of Table 1were the “mass” terms of left and right components, kg, ,; andeg ;,
respectively. As a result, in order to understand the dependence of the found solutions on
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Fig. 5. Solutions for the absolute values of the CKM elements corresponding fo<d0argdetM)| < 101,
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delimeted by the dashed lines correspond to the new evaluationg,fdr(region on the left of the dashed line),
[Vup| @and V., as in Ref[4].

the “mass” terms, we decided to restrict the rangeQfu, andus. The way one controls a
range for a parameter consists simply in adding that parameter to the quantities one wants
to fit, modifying the functionf of Eq. (A.1) given in Appendix A For our numerical
simulation we sef.g = 1. This implies that the introduced parametgrandes have to be
multipied by L for a general case.

We have presented in this section an analysis of the quark mass matrices obtained in
Ref. [1]. In this analysis, we have used 10 parameters and were successful in fitting all
6 quark masses and all the parameters of the CKM matrix. This is showig$n 1-10
for three separate ranges of the quanttéygdetM )| which was defined above. In these
figures, each dotin the scatter plot represergolution which fits the masses and the CKM
matrix. As one can see, the solutions which correspondrgidetM )| ~ 10-1° and which
will have a significance to the strong CP problem, are withirahd 150 of the so-called
R-fit and Bayesian fit respectively, as presented in Réf.
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Fig. 8. Solutions fols andj for the three cases, from top to bottom, corresponding to (a} 10| arg(detM)| <
5x 1071, (b) 1073 < |argdetM)| < 1071, and (c) 1012 < |arg(detM)| < 2 x 10710, The delimeted area is
the allowed region in th@, 7 plane as obtained from Rq#].

6. Possible connection between strong and weak CP

In this section, we will discuss a possiblermection between the region of parameter
space where atdetM) < 1010 and the strong CP problem.

It is well known that the non-trivial vacuum of QCD generates a P and CP violating
term in the Lagrangian of the form

0

Ly= @GWG“”, (66)
where
6 = 6ocp + argdetM). (67)

This term(66) gives a contribution to the electric dipole moment of the neufi@n11]
with the current experimental limjt.2] beingd < 2 x 10-10. The mystery of why should
be so small constitutes the so-called strong CP problem.
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Fig. 9. Solutions for sing and y for the three cases, from top to bottom, corresponding to (&) 10
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The most famous and elegant solution to the strong CP problem is the Peccei—
Quinn mechanisn{13] where § becomes a dynamical field and relaxes to zero at
the minimum of its potential. This dynamical field manifests itself as a pseudoscalar
particle—the so-called axion—whose decegnstant is now severely constrained by
astrophysical and cosmological argumdi#]. Another solution involving a massless up
quark[15] is largely disfavoured by studies of chiral perturbation theory. A third type
of solution to the strong CP problem which has no axion, is the Nelson—Barr type of
mechanisnj16] which assumes exact CP at tree level and whose mass matrices have real
determinants, and, as a result, the strong CP problem does not exist. It can arise at loop
levels and can be “under control”. However, a realistic model of this type is yet to be
constructed.

We have already mentioned that when we introduce the same “mass” term for left and
right componentsKgs. (19) and (19)i.e.,mg, ; = m, ; = mq;, the up and down quark
mass matrices are Hermitian and consequently their determinant il}eatgdetM,,)
and argdetM,) are separately zero. This situation suggests that the symmetry of the
Lagrangian that makes adptM) = 0 at tree level is the “left-right” symmetry of
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Fig. 10. Summary of the 10 parameters space corresponding fo<d0arg(deti)| < 5 x 101,

the components along the sixth dimension. If we also assume CP conservation at the
Lagrangian level, this scenario would provide a solution to the strong CP problem.
However, this symmetry has to be brokeachuse, as we have already mentioned, the
case in which the quark mass matrices aggrhitian does not reproduce the right mass
spectrum and the right CKM matrix. One could imagine a scenario where the “left-right”
symmetry is spontaneously broken. This will induce some loop corrections that will make
the mass matrices deviate from Hermiticitgproducing the right mass spectrum and right
CKM matrix. At the same time the breaking of this “left—right” symmetry could induce
at loop levels a non-vanishiry But one can envision a scenario were the deviation from
Hermiticity happens in such a way that &tgtM,) and argdetM,), each being now of
O(1), can cancel each other so as to kéep 2 x 1019,

As we have mentioned earlier, the solutions presented in this paper correspond to
very small windows for the domain wall parameterss, because we wanted to put in
evidence the effect of the “left—right” symmetry breaking, especially irftharameter. In
searching for a quantity which could “retain the memory” of this “left—right” symmetry,
we decided to plot, se€ig. 13 the sum of the argumentargdetM))| versus the
“CoM”, the weighted average of the “mass” terms along the sixth dimension, which is
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Fig. 11. Summary of the 10 parameters space corresponding’t%dﬂ)arg(detM)| <101,

defined as

CoM = 2) ieqi + X:lizsu,i +Y 84 .

As one can notice fronfFig. 13 the sum of the arguments tends to go to zero for
a particular CoMx~ 0.125, and this behavior is confirmed Kig. 14 Notice that, for
practical reasons, we have reduced the number of points (i.e., the number of solutions)
in Figs. 13 and 14in order to reduce the sizes of the files containing these two
figures. The actual number of solutions is much larger than what is shown in these
figures.

Now one can think that the value of 125 for the “CoM” when the “left-right”
symmetry is broken, and which correspondsite: 2 x 10710, was also the value for
the “CoM” before the breaking, wheéhwas equal to zero. In other words one can imagine
a scenario where the “mass” terms of left and right components are split such a way as to
retain the same value of the “CoM”. To inviem mechanism which could break the “left—
right” symmetry and which could reproduce the scenario mentioned above is beyond the
scope of this paper, but it is one of the main topics we would like to investigate in the
future.

(68)
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12. Summary of the 10 parameters space corresponding’&?l&)\ arg(detM)| < 2 x 10710,

If one now looks afig. 8 which show the solutions in thg, ;7 plane for| arg(detM)|
in the three different ranges, one can see that the solutions corresponding’fo<10
|argdetM)| < 2 x 10~10 tend to favor a particular region of thg 7 plane. In particular,
the region of allowed solutions shrinks down in ihéirection constraining the parameter
o in the small window~ [0.3, 0.32]. These solutions are withinoland 150 of the so-
called R-fit and Bayesian fit, respectively, as can be seen f@n8. This could be an arti-
fact of the way the minimization process works, but it could also be an indication that there
is a deep connection between weak CP violation and strong CP violation in our model.

As we have already mentioned earlier, one cannot exclude completely the existence of
other solutions, because of the way the mirzation process works, but we believe that the
results obtained here can give some very good indications of how the allowed parameter
space might look like.

7. Epilogue

We have presented in this paper a complete phenomenological analysis of the model
of quark mass matrices as derived from six dimensionflhyWith just 10 parameters,
we have found a large number of solutions which can fit the 6 quark masses as well as
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the CKM matrix as can be seen kigs. 1-9 Furthermore, we subdivide these solutions
into three sets: (1) those that have 30< |argdetM)| < 5 x 1071, (2) those that have
102 < |argdetM)| < 1071, and finally (3) those that have 1¥ < |argdetM)| <

2 x 10719, The first two sets are given for the sole purpose of comparison with the last
set which is most relevant to the strong CP problem as discussed in the last section. As
one can observe frorRigs. 8 and 9there is a deep connection between the weak CP
parameters and the strong CP phase. In order to satisfy the constraint@patameter,

i.e., |argdetM)| < 2 x 1019 in our framework, the solutions obtained farand7 are
found to be within & and 150 of the so-calledr-fit and Bayesian fit, respectively. As
measurements of weak CP parameters begoore accurate in the fute, they will either

rule out or confirm our predictions.
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Appendix A

As mentioned above the model we considered has 10 free parameters. Relying on this
freedom we were able to fit the 6 quark masses evaluated at an energy scale equal to the
mass ofZ gauge bosom/z, with constraints for the two ratiog, /m,; andmg/mgy, the
absolute values of the CKM matrix elements and the CP paramgtersor equivalently
the three angles and one phase of the CKM ixattandard parametrization, for a total
number of 10 quantities. The approach we used to derive the parameter space consists in
minimizing a particular function, built in such a way that its global minima correspond to
the region defined by the experimental constraints. This function is defined in the following
way:

i N
(xlth _ ximln)Z ()C}h _ ximax)z

SO =) YT S ), A

i=1

wheref (x) is the step functiony is the number of quantities that we want to;ﬁl’f] is the
predicted value for théth quantity,x™" andx fix the range for theth quantity, and
(x;) is its average value. It is immediate to verify frdfqg. (A.1)that when all the predicted
quantitieSx}h's are contained in the proper ranges, the funciidakes its minimum value
equal to zero.

The set of parameters which correspond to a zero value for the fungttisrcalled a
solution. In our particular case the function we are considering is a mappingdtSio R.
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The parameter space is really big and to find the solutions, which correspond to the global
minima of f, can be very challenging. The global minimaoftan be infact surrounded

by a lot of local minima which most of the time can make the minimization process fail.
Therefore, just trying different initlaconditions with the hope to find the good one that
will allow the minimization process to follow the right path towards a global minimum can
result quite inefficient.

Itis a common belief that there does not ¢gigeneral recipe to follow for minimization
problems. A minimization procedure that can be very efficient for a particular problem, can
be very inefficient in an another case or even fails. In the particular case where the function
that we want to minimize depends on many paeters, there is a minimization procedure,
called simulated annealifd7,18], which seems to work more efficiently than others. This
procedure is mostly used when the global minima are surrounded by a lot of local minima.
Infact this minimization process can find aoghl minimum also after being trapped in a
local minimum. The way instead most of the minimization processes work is to go, from
the starting point, immediately downhill ag fas they can go, but this often leads to a local
minimum.

At the heart of the method of simulated annealing is an analogy with thermodynamics,
specifically with the way liquids crystallize, or metal cool and anneal. When a liquid is
cooled down sufficiently slowly, the atoms are often able to line themeselves up and form
a pure crystal, which corresponds to the state of minimum energy for the system. But if
the liquid is cooled quickly, it does not reatttis state but rather ends up in an amorphous
state of higher energy. So nature, as long as the process of cooling is sufficiently slow, is
able to find the minimum energy state. The way nature works is based on the fact that for
a system in thermal equilibrium at temperat@@rethe probability for the system to be in a
state of energ¥ is given by the Boltzmann probability distribution:

E
ProhE) exp( KT>' (A.2)
This implies that even at low temperature there is a chance, albeit a tiny one, for the
system to be in a high energy state. Therefore, there exists the possibility for the system
to get out of a local energy minimum and move towards the global one. This principle
has been incorporated in what is called a metropolis algor[tt®h Given a simulated
thermodynamic system, it is assigned a probabifty= exp(—(E2 — E1)/KT) to the
change from a configuration with enerdy to one with energyEs. If E» < E1, P is
greater than unity and in this case to the change is assigned a prob&b#ity, which is
equivalent to say that the system always makes such a change. In thExcasé;, one

can compare the probabiliy = exp(—(E2 — E1)/K T) with arandom-number and make

the change to the new configuration onlyPif> random-number. The system always takes

a downhill step while sometimes takes an uphill step. The metropolis algorithm can be
used for systems other than the thermodynamic ones if we give:

o A description of possible system configurations.
e A generator of random changes in the configuration.
e A function E (analog of energy) whose minimization is the goal of the procedure.
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e A control parametef” (analog of temperature) and an annealing schedule which tells
how it is lowered, e.g., after how many random changes in configuration and with
which step.

Going back to our particular case, the functiprve want to minimize is the analog of
the energy, and each possible set of parareeaterrespond to a particular configuration of
the system. For the algorithm to work a control param@&tewith an annealing schedule
by which it is gradually reduced, has to be introduced, as well as a generator of random
changes in the configuration, that is in tree@meter space. The way these random changes
are taken is the following: a positive quantity, given-b¥ - In(random-number), is added
to the stored function value. The same quantity is subtracted from the function value
corresponding to every new set parametéed fire tried as a replacement point in the
parameter space. (The new points are algtdiusing the downhill simplex method. The
simplex is a set oV 4 1 points withN the number of parameters, and the changes happen
through reflections, expansions and contractions of the simplex.) As mentioned before, this
method allowed the system to jump from a local minimum and to look for a global one. The
algorithm that we have used has been taken from numerical r@pgOther than the
initial set of values for the parameters, also the value for the temperature and the number
of iterations which determine the annealing schedule to reduce the temperature, has to be
given as input. The way these last two valuesevwchosen, as well as the initials conditions
is mostly the result of different attempts. The output of our code is a patch of solutions,
which have been subsequently tested using an independent code written in mathematica.
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