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Why?

A. Multiparticle correlations at RHIC: Mach cone or "deflected jet” or what?

Kharzeev-Levin-McLerran, Nucl.Phys.A748:627 (hep-ph/040327160) - " correlations in
the initial state”

B. At high energy for large P; much better under control than the total cross section

- WE DON'T HAVE TO CONSTANTLY APOLOGIZE

Jalilian-Marian, Kovchegov: Phys.Rev.D70:114017,2004 (hep-ph/0405266) - double
gluon inclusive



High energy evolution - "the JIMWLK equation”

Small perturbative Projectile | P) scatters on a large dense Target (7).

) ——

| P> <T|
| P) has some distribution of color charges - color charge density p“.
|'T") is an ensemble of strong color fields o“.

Energy is high - scattering is eikonal



THE S - MATRIX

The eikonal S - matrix:

S = exp {7, / deﬁ“(x)@“(x)}

The forward scattering amplitude:
SO) = (TUPISIPYT) = [ Da® WWlae)) 2 a(e).
with
=77la] = (PIS1P) = [dp Wllo) exp{i [ dap(@) ()}

and W' a] - probability distribution of the color fields in the target.

>#F is a function of the single gluon scattering matrix 377 9]

S(z) = (0]al(x) S al’(2)]0) = P exp {i/da:_ T o (, x—)}ab .



EVOLUTION OF THE PROJECTILE WAVE FUNCTION

We boost the projectile: the boost opens additional longitudinal phase space which is
populated by "soft” gluons

|P)y+ay = Cay|P)y

Cry = exp{ /d x by (:c)/ 1/2|k+|1/2 [a?(kJr’:c) — aja(k+’a:))]}

The "classical” WW field
a g 2 (Z - x)’t a
b — 2 [ gz
i(2) = o~ / e P (z)

The coherent operator C' dresses the valence wave function by the cloud of the soft
Weizsacker-Williams gluons:

CTAI(KY,2) O = Al(k", 2) + b](2)



EVOLUTION OF THE S - MATRIX

Syt aylal = (P|CLy S Cay|P)

= (PIchy (@) exp {i [ d2p(@)a" (@)} Cav(a,al,9)|P)

It is possible to explicitly:
A. Average C and C' as a function of a and a' over the soft gluon vacuum.

B. Express the factors of p®(x) as functional derivatives with respect to S(x).



ALL SAID AND DONE:

LE{?P[S] _ _ g/ IMWLK [S,i

- s} 37 [S]

with the JIMWLK Hamiltonian

B~ Qi) Qi)

The gluon production amplitude

Qi) = g [ EZEE @) - 5(2) Thia)]

: (x — 2)?

The generators of the left/right color rotations

i) =~ {S@ T ) i) = - {1750 g



FOR THE FORWARD AMPLITUDE

d 8
— S =— / Do W'la] g/MWEE [s, —] >8]
dY 58

Why gluon production amplitude? Before boost the scattering is eikonal - number of
gluons is preserved by the scattering. After boost - final state after scattering can contain
an extra gluon. So the change in the scattering probability is the probability of producing
an extra gluon.

Qs Qs
T Z . 7 T
YT LT
> IS¢ X% %
a a a a a a

Complementary ways of thinking:
A. The wave function evolves - has an extra gluon at higher rapidity - all gluons scatter
eikonally.
B. The S - matrix operator is evolved - it is the same state that scatters, but apart from
eikonal scattering there is a probability to radiate a gluon.



THE DIPOLE LIMIT

Suppose the projectile is made of " color dipoles”.

The dipole S - matrix

() = < TrlSr(2)Sh(y)]

C

Suppose »PP = 3[s]

The color strucure simplifies immensely

Simple algebra+large N, limit the JIMWLK equation becomes

e _ 2 (z — y)” N S
= [ A e s y) — s(e, ) sy, 2)] 5
First order equation - the solution is Yy [s] = Xo[s(Y)]

with s(Y") solving the Kovchegov equation

ds(z,y) - 2 (z — y)?
dy S/d (x — 2)? (y — 2)?

[s(z,y) — s(=, 2) s(y, 2)]



Figure 1. Red Pomeron Trees by Natalija Krisciuniene.



BEYOND THE FORWARD AMPLITUDE

We know that the "perturbative saturation” violates Froissart bound - total cross
section is not the best observable.

Hard gluon production should be much better.

For the BFKL approximation:
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Very schematically:

do
dY dk% ... dY, dk?

T BFKL BFKL BFKL P
~ T GUITEL (k) ... GYIRE L(ky) GYEEE @



GENERALITIES: SEMI INCLUSIVE OBSERVABLES

The total wave function of the projectile-target system before the collision
[Win) = Cy |P)|T).

THE PROJECTILE HAS BEEN EVOLVED BY THE TOTAL RAPIDITY OF THE
PROCESS

The system emerges from the collision region with the wave function
[ Tout) = SCy|P)|T).
Calculating any observable O (for example number of gluons) in the final state:
(O) & (V| O W, ) = (T{P|CLSTOSCy|P)|T).

Except not quite: the system has to evolve to asymptotic time ¢ — oo (account for final
state emissions)

(O) = (T|(P|Cy (1 — SHhcy & ¢f (1 — S)Cy |P)|T)



Technically it is convenient to distinguish between the target fields in the amplitude
and the conjugate amplitude:

0y[S, 8] = (P|cl (1 — Shey O ¢l (1 — S)cy |P)
The observable eventually is calculated as

(O)y = (T Oy[S,S]ls_5 |T) = /DSD§ w'[S]6(S — S) Oy[S, 5]

Just like for the forward scattering amplitude we can algebraically deduce the high
energy evolution

dO,[S, S] — lim Oy+aylS, S] — O,[S, S]
dy Ay—0 Ay



SEMIINCLUSIVE EVOLUTION

4 018, 8] = — Hy[S, 5] O[S, ]
dy

The Hamiltonian Hjs

Hs[S, S| = /[Q,j”(z,[S])+ Qi (2, [SD] [Qi (2, [S]) + Qi (=, [S])]
For any observable the evolution operator between rapidity y; and y» is

US(yl, y2) — EZUP[— Hsj (yz - yl)]

Q[S]  HiS] QIS] QIS]  HilS] QIS] QIs] QIS]
a a a a a a a a a a a a



FOR A STRING OF OBSERVABLES AT DIFFERENT RAPIDITIES:

A

(On...00) = /DS DSWT'[S]5(S — 8)Us(0, Y,) OulS, S]Us(Yy, Yn_1) X
X On_1]S,8] ... Us(Y1,Y) S 718" 5]
NOTE:

X](J)DP[ST S] - is the "forward scattering amplitude” at initital rapidity in the "target
field" o + &.

In the end though: S = S, and =77 = 1.

But the presence of O; does not allow setting > = 1 right away.



SPECIFICS: GLUON PRODUCTION

The observable

O, = nlki,y) = al“(ki,y)al(ki,y)

We go through the motions and derive THE OPERATOR

R d2z d22 7 z—Zz a a =~
0y[5,8] = [ 5= 5= ™77 Qi(= [8]) Qi (2, 5))
QIS] QIS]

““““““““““““““““““““



Y -

SINGLE INCLUSIVE GLUON PRODUCTION

04(K)
Ll
do
dY; dk?
do _ Qs pik(z=2) /
dYi dk? T Jz,2 x

(z —x)i (Z2—y)

y(z—2)? (2 —y)?

X [<8z3y>Y1 + <Sw,Z>Y1 - <SZ,2>Y1 - <S$,y>Y1]

Yu. Kovchegov

and

K. Tuchin, 2001

_ /DS DSWT[S]5(S — 8) Uy, O[S, 8] Uy_y, L[S'S]

GPM Y (2, y Y — V) x



(s) denoting S-matrix of a dipole:

(Say)yv; = /DS Wy [S]tr[S] S,]

can be deduced from solutions of the BK-JIMWLK eqgn

Beyond single gluon is difficult without approximations...



BACK TO THE THE DIPOLE MODEL

Like before - assume that our projectile contains only dipoles, and take N, — o0
limit.

OUR ZO0O:
The dipole The "mirror” dipole
1 ; B 1 _ ~
Szy = N tr(Sr(z) Sp(y)]; Sw,y = N tr(Sr(z) Sp(y)]

The ( " mirror”) quadrupole

e = o tr1Sp() Sh() Se(w) SHO); G = 7188 (@) Sh(y) Sr(w) Sp)].

No higher multipoles appear if the projectile contains only dipoles!

THE WANNABES

1 _ _
Wy, yvu — NtT[SF(x) S;‘(y) SF('U/) S;’('U)] = qx,y,v,u + t:ﬂ,y,v,u



Remember that we have to set S = S at the end of our computation.
The WANNABES become real multipoles, but only at the end of the calculation.

While =% propagates in Y, the WANNABES behave like independent degrees of
freedom.

Still, since t is set to zero in the end, it does not wonder very far from zero throughout
evolution and one can set up perturbation theory in t.



THE LARGE N LIMIT

In the large N¢ limit all color singlets propagate "independently”.

Practically this means for any functional F' that is propagated by the Hamiltonian Hj:

Fyls,5,q,q, w] = Fo[s(Y),5(Y), q(Y),q(Y), w(Y)]

where all the degrees of freedom: s, 5, g, ¢, w satisfy differential equations
generated by the corresponding " first quantized” Hamiltonian.

Thus AT LARGE N¢
H3 — Hs + Hq + Ht



H,  generates Kovchegov evolution for s.

d
d—ys(az,y) — KBFEL ® (s — ss)

H, generates linear evolution of ¢ ( BKP - like) WHICH IS COUPLED TO s.

d

WQ(%?J,U”U) = K1 ®q + Ke ® gs + K3 ® ss

H,;  generates a nonlinear evolution of ¢t WHICH IS ALSO COUPLED TO s.

d
d—yt(a:,y,u,v) = G_l[s] Rt + ARttt

(7 is a propagator in the external “Pomeron” field s.

For the two point Wannabe (Wannabe dipole) t(x, y,y, ©) the propagator is just
BFKL: G — GPIEL



Re-express the insertion operator @,

Oy(k) = A_1(k) + Ao(k) + Ai(k)

A_q - kills one ¢t
A - propagates t

A1 - splits one t into two

K a(k) K
)\ gt](—)> {sq} )\ t —>ss )\ tg(—)> qq
.L k = ‘L X T i k
: \ S s % kY
* . . 4 .,
.0 4 [N ij \‘
{sq} {sa} S S q q
k a(k)
At (—)>t At >t




In the dipole model the projectile is made of dipoles - the the initial condition depends
on the Wannabe dipoles:

A

(O, ... O = / Ds DgDt Ws] 6(t) e AsHHIHHIYn 0 1o 0 0\ U (Y, Vi 1) X

X Op_1[s,q,t] ...e HsTHHAIY Y1) 53 2P

where

PP PP = PP PP
E0 — E0 [STS] — E0 [ww,y,y,x] — E0 [1 + tw,y,y,x]

We can only hit n factors of ¢ with derivatives before setting ¢ to zero - at most n
insertions of A_4

For any n - finite number of diagramms where the Wannabes propagate from the
projectile rapidity to at most the rapidity of the last gluon - and the dipoles and quadrupoles
propagate all the way to the target rapidity.

THE WANNABES PROPAGATE IN THE DIPOLE BACKGROUND!



TWO GLUON INCLUSIVE PRODUCTION

Y
Y, k1
Y2 kz
/9 N
0 S .

J. Jalilian-Marian and Yu. Kovchegov (2004)

Violates AGK cutting rules because the three - and four - point Wannabes couple to
dipoles in the propagation.

Should be feasible to calculate numerically...



We can argue for serious simplification in the case of one and two gluon production.

For one gluon - only the propagator of the wannabe dipole appears. This decouples
form s and q - is just BFKL

For 2 gluons more complicated since the vertex Ag turns the two point wannabe into
a three point wannabe.

AO . t(az,y,y,x) - t(iE,y,y,’U)

BUT! If the target is saturated with saturation momentum (), one can show that
[z —v| < Q.

BUT! For small z — v| the propagator of the three point wannabe can be expressed
in terms of the wannbe dipole (or just BFKL)

G (0, Yo, vol|z, Y, vin) =

1
5 (GBFKL(:UO, volz, y;m) + G (yo, voly, vim) — GP (w0, volz, v; n))

So life is a bit easier for brave people who would do numerics!

BUT NOT FOR THREE GLUONS AND BEYOND...
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Figure 2: Daniel Kovner and the end of the talk



