The Nature of Deconfinement

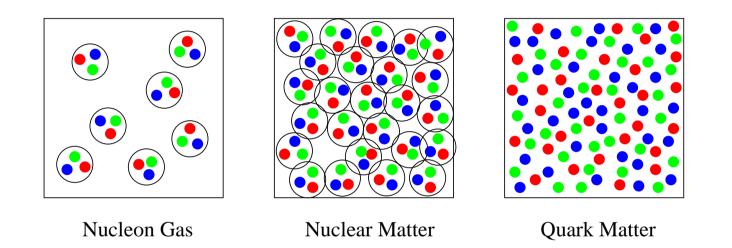
Helmut Satz

Universität Bielefeld, Germany and Instituto Superior Técnico, Lisboa, Portugal

Santiago de Compostela

February 10, 2006

What happens to strongly interacting matter when the density of constituents is increased?



When many hadrons overlap, quarks cannot identify "their hadron", the concepts of a hadron and of confinement become meaningless, high quark density and colour screening forbid hadronic scales, there is a transition to a different state of matter.

1. The Problem

QCD predicts that with increasing temperature, hadronic matter undergoes a transition to a plasma of deconfined quarks and gluons

What kind of transition?

Thermodynamic critical behaviour, phase transition:

spontaneous symmetry breaking \Rightarrow singular behaviour of partition function, discontinuous or divergent thermal observables

Two limits in QCD lead to thermodynamic critical behaviour:

- $m_q \rightarrow \infty$: pure gauge theory (glueball/gluon medium) global Z_N symmetry breaking \rightarrow deconfinement
- $m_q \rightarrow 0$: chiral limit (constituent/current quarks) chiral symmetry restoration \rightarrow effective quark mass shift

Order Parameters

 $\begin{array}{ll} \underline{\text{deconfinement: Polyakov loop}} & L(T) \sim \exp\{-F_{Q\bar{Q}}/T\} \\ F_{Q\bar{Q}}: \text{ free energy of static } Q\bar{Q} \text{ pair for } r \to \infty \\ \\ & L(T) \begin{cases} = 0 & T < T_L \text{ confinement} \\ \neq 0 & T > T_L \text{ deconfinement} \end{cases} \end{array}$

defines deconfinement temperature T_L

chiral symmetry restoration: chiral condensate $\chi(T) \equiv \langle \bar{\psi}\psi \rangle \sim M_q$ measures dynamically generated ('constituent') quark mass

 $\chi(T) \begin{cases} \neq 0 & T < T_{\chi} \text{ chiral symmetry broken} \\ = 0 & T > T_{\chi} \text{ chiral symmetry restored} \end{cases}$

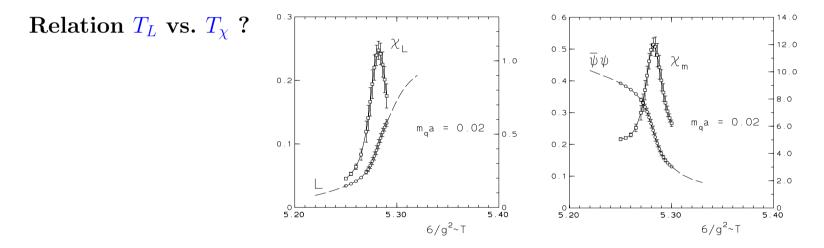
defines chiral symmetry temperature T_{χ}

Caveat:

order parameters, associated T_x exist strictly only in limits $m_q \to 0, \infty$

But finite temperature lattice QCD finds:

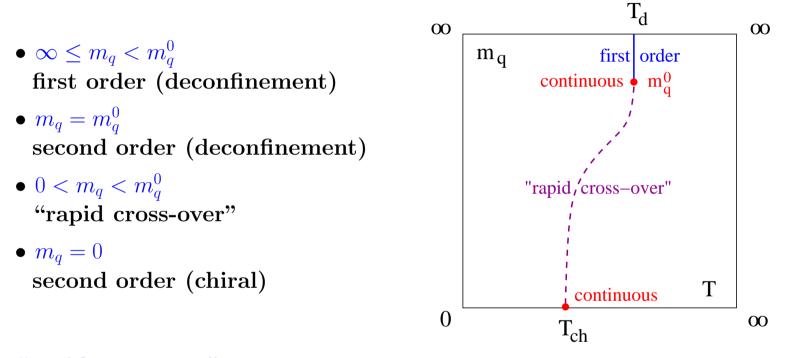
 $L(T), \chi(T)$, energy density vary rapidly in small T interval for all m_q , define T_L and T_{χ} for all m_q



Polyakov loop and chiral condensate vs. temperature

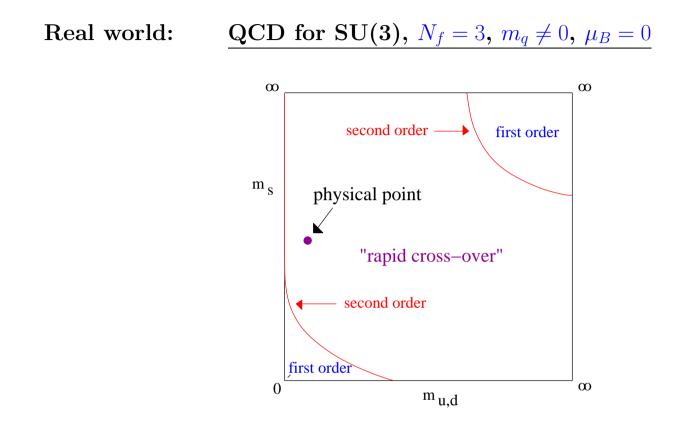
- Deconfinement, chiral symmetry restoration transitions coincide
- What transition structure for different values of m_q ?

Illustration:



"rapid cross-over":

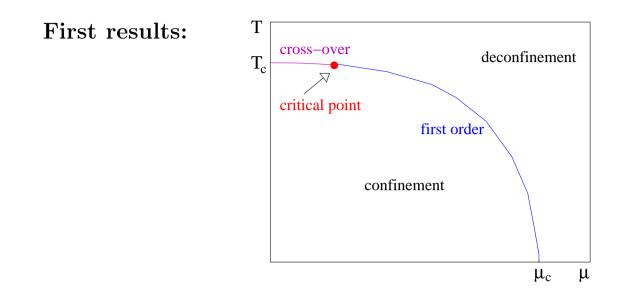
- no spontaneous symmetry breaking,
- no singular behaviour of thermodynamic observables,
- but always rapid variation in narrow temperature interval



physical point of two light, one heavier quark: rapid cross-over

Finite baryon density, $\mu_B \neq 0$:

computer simulation difficulties, need new algorithms



 \Rightarrow Deconfinement in the early universe, in high energy heavy ion collisions occurs as rapid cross-over.

But what is a rapid cross-over?

How do the separated states of matter differ?

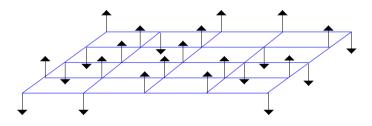
Thermodynamic critical behaviour, phase transitions well-defined: spontaneous symmetry breaking \rightarrow non-analytic partition function

Is there a more general formulation of critical behaviour?

2. Critical Behaviour and Cluster Formation

Look for help in theory of spin systems, Ising model:

d-dimensional lattice grid, N^d sites with spins $s_i = \pm 1 \, \forall i = 1, ..., N^d$, uniform next neighbor interaction $\mathcal{H} = -Js_is_{i+1}$



partition function

$$Z(T, H=0) = \prod_{i=1}^{N^d} \sum_{s_i=\pm 1} \exp\{\beta J \sum_{i,j=1}^{nn} s_i s_j - \beta H \sum_i s_i\}$$

temperature $T = \beta^{-1}$, external field H; take H = 0

Partition function has global Z_2 symmetry:

 $s_i \rightarrow -s_i \quad \forall \ i = 1, ..., N^d$

leaves sum over all states Z(T, H=0) invariant

for high temperatures $(T \ge T_c)$, state of system also invariant: \exists disorder, as many spins \uparrow as \downarrow

for low temperatures $(T \leq T_c)$, state of system not invariant: \exists order, more \uparrow or more \downarrow , spontaneous symmetry breaking

State of system specified by order parameter

$$m(T, H = 0) = \frac{1}{Z(T, H = 0)} \prod_{i=1}^{N^d} \sum_{i} \left[\frac{\sum_i s_i}{N^d} \right] \exp\{\beta J \sum_{i,j}^{nn} s_i s_j\}$$

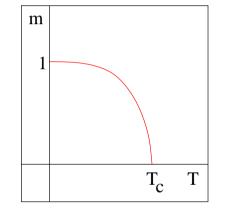
not invariant under spin flip $s_i \rightarrow -s_i \forall i$:

$$m(T, H=0) \to -m(T, H=0)$$

so that

 $m(T, H = 0) \begin{cases} \neq 0 & \text{for ordered state, broken symmetry} \\ = 0 & \text{for disordered state, symmetry} \end{cases}$

In thermodynamic limit $N \to \infty$: m(T, H = 0) is not analytic $m(T) \sim \begin{cases} (T_c - T)^{\beta} > 0 & \forall T < T_c \\ 0 & \forall T > T_c \end{cases}$ \Rightarrow critical exponent β



Other observables \rightarrow other critical exponents, scaling, renormalization group theory, universality classes, ...

Alternative view of Ising critical behaviour (consider d = 2)

domain formation & fusion

With decreasing temperature,

 \exists larger and larger clusters of like-sign spins, but for $T \geq T_c$: $N_{\uparrow} = N_{\downarrow}$

Below T_c , $N_{\uparrow} > N_{\downarrow}$, infinite cluster of \uparrow , finite cluster of \downarrow (or vice versa)

Divergence of cluster size = Percolation

Percolation:

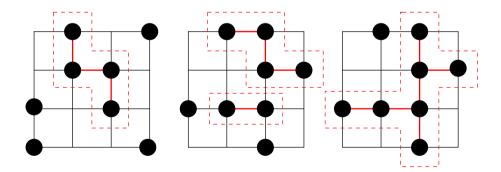
geometric critical behaviour, critical exp'ts, universality classes, ...

⇒ Is the geometric critical behaviour, defined as percolation of spin clusters, equivalent to the thermal critical behaviour, defined as onset of spontaneous magnetization? ⇐

NB: "equivalent" = same T_c , same critical exponents (same universality class) Answer: YES, if...

if... clusters are defined the right way:

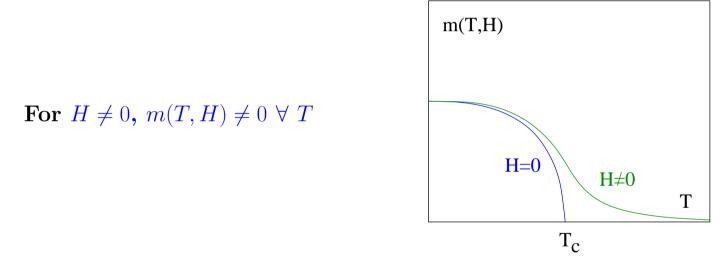
- set of adjacent like-sign spins; this alone not enough, random like-sign combinations must be excluded
- bonds between like-sign spins with $p = 1 \exp[-2J/kT]$
- cluster \equiv set of bonded, adjacent, like-sign spins



Ising model (any d): <u>cluster percolation = onset of magnetization</u> identical critical behaviour

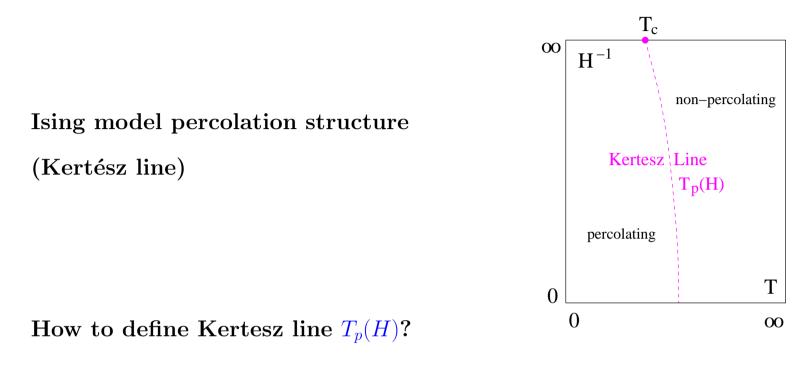
3. The Survival of Percolation

In the presence of an external magnetic field $(H \neq 0)$, Z_2 is explicitly broken, the Ising partition function is analytic, there is no more thermal critical behaviour



Percolation survives for all H, defines Kertész line $T_p(H)$ such that

T(H) $\begin{cases} \leq T_p(H) & \exists \text{ cluster percolation} \\ \\ > T_p(H) & \text{no cluster percolation} \end{cases}$



• percolation temperature for (C-K) clusters at given H

• cluster size behaviour; number n(s) for clusters of size s

J.-S. Wang

$$n(s) \sim s^{-\tau} \exp\{-hs - \Gamma(t)s^{\sigma}\}$$

with h = H/kT, $t = |T - T_c|$, $\sigma \simeq 2/3$

• surface tension $\Gamma(t)$ constitutes order parameter for percolation transition when $H \neq 0$

$$\Gamma(T) \sim \begin{cases} (T_p - T)^x > 0 & \forall \ T < T_p \\ 0 & \forall \ T > T_p \end{cases}$$

in terms of physics in the percolating vs. non-percolating phase

Conclude:

geometric critical behaviour \sim cluster percolation

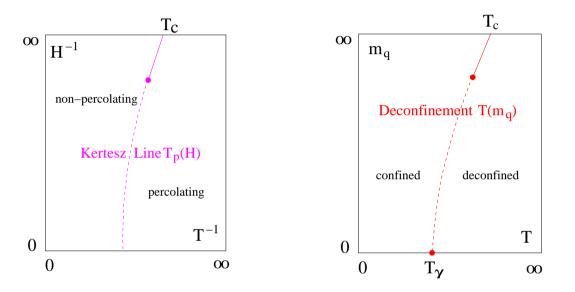
- more general than thermal critical behaviour
- equivalent to thermal critical behaviour in specific limiting cases

Compare phase structure of spin and gauge theories:

- Ising (Z_2) , SU(2) in same universality class
- 3-state Potts (Z_3) , SU(3) in same universality class

QCD with colour SU(3), three equal mass flavours

SU(3) gauge theory, Z_3 spin theory for H = 0: 1st order transition (spin theory T^{-1} , $H^{-1} \sim$ gauge theory T, m_q)



Conjecture:

- in general, deconfinement \sim cluster percolation
- in the limit $m_q \rightarrow \infty$, cluster percolation \equiv thermal transition
- rapid cross-over for $m_q < m_q^0$ is reflection of cluster percolation

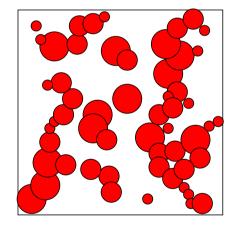
4. Deconfinement and Hadron Percolation

Consider hadrons as spheres of radius $r_h \simeq 0.8$ fm

percolation occurs for density $n_c = \frac{0.34}{(4\pi/3) r_h^3} \simeq 0.16 \text{ fm}^{-3}$

 \Rightarrow formation of <u>hadronic matter</u>

for $n \leq n_c$: only isolated hadrons, clusters for $n = n_c$: connected hadronic medium 31 % hadronic clusters 69 % empty space for $n \geq n_c$: both "media" percolate



When does the percolating vacuum disappear? Or, starting from high density side, when does vacuum first percolate?

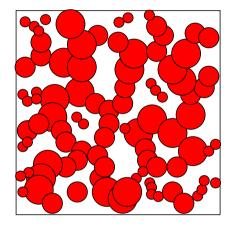
Percolation condition for

"hadronic size" vacuum bubbles $\bar{n}_c =$

$$\bar{n}_c = \frac{1.24}{(4\pi/3) r_h^3} \simeq 0.58 \text{ fm}^{-3}$$

for $n = \bar{n}_c$: end of connected vacuum 69 % hadronic clusters 31 % empty space for $n \ge \bar{n}_c$: only isolated vacuum bubbles

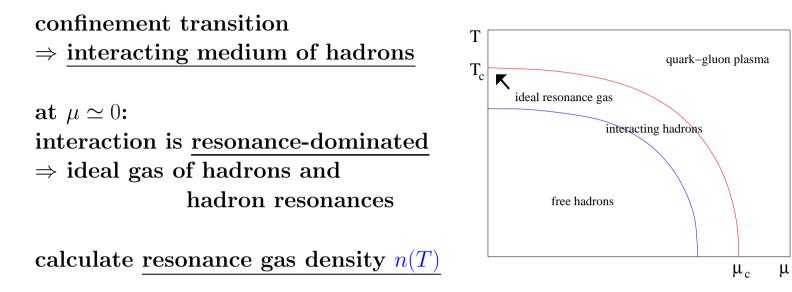
 $n \ge n_c$. Only isolated vacuum bubbles in dense interacting matter



Deconfinement as percolation:

when a hadronic medium becomes so dense that only <u>isolated</u> vacuum bubbles survive, then it becomes a quark-gluon plasma

Any predictive power?



 $n_h(T) = \bar{n}_c$ determines critical temperature:

 $T_c \simeq 170 \,\,\mathrm{MeV}$

hadron size + percolation \Rightarrow deconfinement

Summary

1. The Problem:

is there a general theory of deconfinement? what is a rapid cross-over?

2. Critical Behaviour and Cluster Formation:

Ising Model: for H = 0, geometric = magnetic critical behaviour; geometric critical behaviour: cluster percolation

3. The Survival of Percolation:

Ising Model: for $H \neq 0$, no more magnetic critical behaviour; percolation survives for all H, defines different states of matter; conjecture: deconfinement in general is cluster percolation

4. Deconfinement and Hadron Percolation:

deconfinement as the disappearance of connected vaccuum; resonance gas $\rightarrow T_c$