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What happens to strongly interacting matter when the density of

constituents is increased?

Nucleon Gas Nuclear Matter Quark Matter

When many hadrons overlap, quarks cannot identify “their hadron”,

the concepts of a hadron and of confinement become meaningless,

high quark density and colour screening forbid hadronic scales,

there is a transition to a different state of matter.
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1. The Problem

QCD predicts that with increasing temperature, hadronic matter

undergoes a transition to a plasma of deconfined quarks and gluons

What kind of transition?

Thermodynamic critical behaviour, phase transition:

spontaneous symmetry breaking ⇒ singular behaviour of partition

function, discontinuous or divergent thermal observables

Two limits in QCD lead to thermodynamic critical behaviour:

• mq → ∞ : pure gauge theory (glueball/gluon medium)

global ZN symmetry breaking → deconfinement

• mq → 0 : chiral limit (constituent/current quarks)

chiral symmetry restoration → effective quark mass shift
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Order Parameters

deconfinement: Polyakov loop L(T ) ∼ exp{−FQQ̄/T}

FQQ̄: free energy of static QQ̄ pair for r → ∞

L(T )























= 0 T < TL confinement

6= 0 T > TL deconfinement

defines deconfinement temperature TL

chiral symmetry restoration: chiral condensate χ(T ) ≡ 〈ψ̄ψ〉 ∼Mq

measures dynamically generated (‘constituent’) quark mass

χ(T )























6= 0 T < Tχ chiral symmetry broken

= 0 T > Tχ chiral symmetry restored

defines chiral symmetry temperature Tχ
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Caveat:

order parameters, associated Tx exist strictly only in limitsmq → 0,∞

But finite temperature lattice QCD finds:

L(T ), χ(T ), energy density vary rapidly in small T interval for all mq,

define TL and Tχ for all mq

Relation TL vs. Tχ ?

Polyakov loop and chiral condensate vs. temperature

• Deconfinement, chiral symmetry restoration transitions coincide

• What transition structure for different values of mq?
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Illustration: QCD for colour SU(3), Nf = 2, µB = 0
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• ∞ ≤ mq < m0
q

first order (deconfinement)

• mq = m0
q

second order (deconfinement)

• 0 < mq < m0
q

“rapid cross-over”

• mq = 0

second order (chiral)

“rapid cross-over”:

– no spontaneous symmetry breaking,

– no singular behaviour of thermodynamic observables,

– but always rapid variation in narrow temperature interval

6



Real world: QCD for SU(3), Nf = 3, mq 6= 0, µB = 0

m u,d
0
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first order

first order

"rapid cross−over"

physical point

second order

second order

physical point of two light, one heavier quark: rapid cross-over

Finite baryon density, µB 6= 0:

computer simulation difficulties, need new algorithms
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First results:

µ
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deconfinement

first order
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critical point
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⇒ Deconfinement in the early universe, in high energy heavy ion

collisions occurs as rapid cross-over.

But what is a rapid cross-over?

How do the separated states of matter differ?

Thermodynamic critical behaviour, phase transitions well-defined:

spontaneous symmetry breaking → non-analytic partition function

Is there a more general formulation of critical behaviour?
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2. Critical Behaviour and Cluster Formation

Look for help in theory of spin systems, Ising model:

d-dimensional lattice grid, N d sites with spins si = ±1 ∀i = 1, ..., N d,

uniform next neighbor interaction H = −Jsisi+1

partition function

Z(T,H=0) =
Nd
∏

i=1

∑

si=±1

exp{ βJ
nn
∑

i,j
sisj − βH

∑

i
si}

temperature T = β−1, external field H; take H = 0
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Partition function has global Z2 symmetry:

si → −si ∀ i = 1, ..., N d

leaves sum over all states Z(T,H=0) invariant

for high temperatures (T ≥ Tc), state of system also invariant:

∃ disorder, as many spins ↑ as ↓

for low temperatures (T ≤ Tc), state of system not invariant:

∃ order, more ↑ or more ↓, spontaneous symmetry breaking

State of system specified by order parameter

m(T,H = 0) =
1

Z(T,H = 0)

Nd
∏

i=1

∑

i





∑

i si
Nd



 exp{ βJ
nn
∑

i,j
sisj}

not invariant under spin flip si → −si ∀ i:

m(T,H = 0) → −m(T,H = 0)
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so that

m(T,H = 0)























6= 0 for ordered state, broken symmetry

= 0 for disordered state, symmetry

In thermodynamic limit N → ∞:

m(T,H = 0) is not analytic

m(T ) ∼























(Tc − T )β > 0 ∀ T < Tc

0 ∀ T > Tc

⇒ critical exponent β

1

Tc T

m

Other observables → other critical exponents, scaling, renormaliza-

tion group theory, universality classes, ...

Alternative view of Ising critical behaviour (consider d = 2)

domain formation & fusion
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With decreasing temperature,

∃ larger and larger clusters of like-sign spins, but for T ≥ Tc: N↑ = N↓

Below Tc,

N↑ > N↓, infinite cluster of ↑, finite cluster of ↓ (or vice versa)

Divergence of cluster size = Percolation

Percolation:

geometric critical behaviour, critical exp’ts, universality classes, ...

⇒ Is the geometric critical behaviour,

defined as percolation of spin clusters,

equivalent to the thermal critical behaviour,

defined as onset of spontaneous magnetization? ⇐

NB: “equivalent” = same Tc, same critical exponents

(same universality class)
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Answer: YES, if... Fortuin & Kasteleyn, Coniglio & Klein

if... clusters are defined the right way:

• set of adjacent like-sign spins;

this alone not enough, random like-sign combinations must be

excluded

• bonds between like-sign spins with p = 1 − exp[−2J/kT ]

• cluster ≡ set of bonded, adjacent, like-sign spins

Ising model (any d): cluster percolation = onset of magnetization

identical critical behaviour
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3. The Survival of Percolation

In the presence of an external magnetic field (H 6= 0), Z2 is explicitly

broken, the Ising partition function is analytic, there is no more

thermal critical behaviour

H=0

m(T,H)

H=0
T

Tc

For H 6= 0, m(T,H) 6= 0 ∀ T

Percolation survives for all H, defines Kertész line Tp(H) such that

T (H)























≤ Tp(H) ∃ cluster percolation

> Tp(H) no cluster percolation
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Ising model percolation structure

(Kertész line)

How to define Kertesz line Tp(H)?

• percolation temperature for (C-K) clusters at given H

• cluster size behaviour; number n(s) for clusters of size s

J.-S. Wang

n(s) ∼ s−τ exp{−hs− Γ(t)sσ}

with h = H/kT , t = |T − Tc|, σ ' 2/3
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• surface tension Γ(t) constitutes order parameter for percolation

transition when H 6= 0

Γ(T ) ∼























(Tp − T )x > 0 ∀ T < Tp

0 ∀ T > Tp

in terms of physics in the percolating vs. non-percolating phase

Conclude:

geometric critical behaviour ∼ cluster percolation

– more general than thermal critical behaviour

– equivalent to thermal critical behaviour in specific limiting cases

Compare phase structure of spin and gauge theories:

• Ising (Z2), SU(2) in same universality class

• 3-state Potts (Z3), SU(3) in same universality class
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QCD with colour SU(3), three equal mass flavours

SU(3) gauge theory, Z3 spin theory for H = 0: 1st order transition

(spin theory T−1, H−1 ∼ gauge theory T, mq)
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Conjecture:

– in general, deconfinement ∼ cluster percolation

– in the limit mq → ∞, cluster percolation ≡ thermal transition

– rapid cross-over for mq < m0
q is reflection of cluster percolation
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4. Deconfinement and Hadron Percolation

Consider hadrons as spheres of radius rh ' 0.8 fm

percolation occurs for density nc =
0.34

(4π/3) r3
h

' 0.16 fm−3

⇒ formation of hadronic matter

for n ≤ nc: only isolated hadrons, clusters

for n = nc: connected hadronic medium

31 % hadronic clusters

69 % empty space

for n ≥ nc: both “media” percolate

When does the percolating vacuum disappear? Or, starting from

high density side, when does vacuum first percolate?
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Percolation condition for

“hadronic size” vacuum bubbles n̄c =
1.24

(4π/3) r3
h

' 0.58 fm−3

for n = n̄c: end of connected vacuum

69 % hadronic clusters

31 % empty space

for n ≥ n̄c: only isolated vacuum bubbles

in dense interacting matter

Deconfinement as percolation:

when a hadronic medium becomes so dense that only isolated

vacuum bubbles survive, then it becomes a quark-gluon plasma

Any predictive power?
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confinement transition

⇒ interacting medium of hadrons

at µ ' 0:

interaction is resonance-dominated

⇒ ideal gas of hadrons and

hadron resonances

calculate resonance gas density n(T )

Tc

T

µµ c

quark−gluon plasma

interacting hadrons

free hadrons

ideal resonance gas

nh(T ) = n̄c determines critical temperature:

Tc ' 170 MeV

hadron size + percolation ⇒ deconfinement
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Summary

1. The Problem:

is there a general theory of deconfinement?

what is a rapid cross-over?

2. Critical Behaviour and Cluster Formation:

Ising Model: for H = 0, geometric = magnetic critical behaviour;

geometric critical behaviour: cluster percolation

3. The Survival of Percolation:

Ising Model: for H 6= 0, no more magnetic critical behaviour;

percolation survives for all H, defines different states of matter;

conjecture: deconfinement in general is cluster percolation

4. Deconfinement and Hadron Percolation:

deconfinement as the disappearance of connected vaccuum;

resonance gas → Tc
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