9. 2. 2006

Sequential Charmonium Suppression

Helmut Satz

with Frithjof Karsch and Dmitri Kharzeev

 $\mathrm{hep}\text{-}\mathrm{ph}/0512239$

Santiago de Compostela, Feb. 10, 2006

1. Charmonium Binding and Dissociation

Charmonia: $c\bar{c}$ bound states stable under strong decay

Binding energy $\Delta E = 2 M_D - M_i$

ground state J/ψ : tightly bound $\Delta E \gg \Lambda_{QCD}$, very small $r_{J/\psi} \ll r_h$

What happens to binding in QGP?

Colour screening \Rightarrow binding becomes weaker and of shorter range

What happens when force range < charmonium radius? Q and \overline{Q} cannot "see" each other \Rightarrow charmonium dissociates

 \Rightarrow charmonium dissociation points determine temperature, energy density of medium

How to calculate? Three possibilities:

- 1. model heavy quark potential V(r, T), solve Schrödinger equation: Karsch et al. 1988, Digal et al. 2001 $T_{J/\psi} \gtrsim T_c, T_{\chi} \& T_{\psi'} \lesssim T_c$
- 2. determine heavy quark potential V(r,T) in lattice QCD, solve Schrödinger equation

Wong 2004, 2005	state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$
Alberico et al. 2005		9.10	1 16	1 10
Digal et al. 2005	I_d/I_c	2.10	1.10	1.12

3. calculate quarkonium spectrum directly in finite T lattice QCD quenched: Umeda et al. 2001, Asakawa & Hatsuda 2004, Datta et al. 2004, Iida et al. 2005 unquenched: Morrin et al. 2005 state $J/\psi(1S)$ $\chi_c(1P)$ $\psi'(2S)$

 T_d/T_c

> 2.0

?

< 1.1

Conclude:

- J/ψ survives up to $T \ge 2$ $T_c \Rightarrow \epsilon_{J/\psi} \ge 15 \text{ GeV/fm}^3$
- χ_c and ψ' dissociated near $T_c \Rightarrow \epsilon_{\psi',\chi} \simeq 0.5 2 \text{ GeV/fm}^3$
- caveats: thermal activation, widths as f(T)

Schematic Approach:

- ψ' and χ_c melt at same point $T \simeq T_c$, same suppression pattern $S_{\psi'}(T) \simeq S_{\chi}(T)$
- J/ψ survives up to much higher $T_{J/\psi} \gg T_c$, so that for $T \leq 2 T_c$, $S_{J/\psi}(T) = 1$.
- in hadronic collisions, $60\% J/\psi$ are directly produced 1S states, 30% come from χ_c decay, 10% from ψ' decay.
- hence

 $S_{J/\psi}(T) = 0.4 \ S_{\psi'}(T) + 0.6 \ \forall \ T \le 2 T_c$

 \Rightarrow scaling relation for data.

2. Charmonium Production in Nuclear Collisions

To probe produced medium, account for effects of nuclear medium determine normal nuclear absorption through p-A or d-A studies

nuclear suppression at SPS (p - A)

specify dissociation cross sections $S \sim \exp\{-n_0 \sigma_i L\}$

(SPS full Glauber analysis)

\mathbf{SPS}

RHIC

 $\begin{aligned} \sigma_{J/\psi} &= 4.18 \pm 0.35 \text{ mb} \\ \sigma_{\psi'} &= 7.3 \pm 1.6 \text{ mb} \end{aligned} \qquad \begin{aligned} \sigma_{J/\psi}(y = 1.8) &= 3.1 \pm 0.2 \text{ mb} \\ \sigma_{J/\psi}(y = 0) &= 1.2 \pm 0.4 \text{ mb} \\ \sigma_{J/\psi}(y = -1.7) &= -0.1 \pm 0.2 \text{ mb} \end{aligned}$

use to account for normal nuclear absorption in AA collisions

• SPS:

calculate $(d\sigma_i/dy)_{Gl}$ as function of centrality, then define

survival probability $S_i = \frac{(d\sigma_i/dy)_{ex}}{(d\sigma_i/dy)_{Gl}}$

for $i = J/\psi$, ψ' in AA collisions as function of centrality

• RHIC:

experiment provides J/ψ production rates in AuAu collisions relative

to pp collisions $R_{AuAu}(y, N_{part})$

as function of rapidity \boldsymbol{y} and centrality N_{part}

define survival probility

$$S(y, N_{part}) = \frac{R_{AuAu}(y, N_{part})}{\{exp\{-n_0[\sigma_{diss}(y) + \sigma_{diss}(-y)]L\}}$$

centrality measures b, L, N_{part} , ϵ related by Glauber

3. Analysis of Nuclear Collision Results

• scaling relation for ψ' and J/ψ $S_{J/\psi}(T) = 0.4 \ S_{\psi'}(T) + 0.6 \ \forall T \le 2 T_c$

in reasonable accord with SPS data

• constant J/ψ rate $S_{J/\psi} \simeq 0.6$ beyond ψ' , χ_c suppression region in reasonable accord with combined RHIC/SPS data

• J/ψ transverse momentum behaviour

 p_T -broadening due to initial state parton scattering: gluons scatter several times before fusing to make $c\bar{c}$

 $\Rightarrow \langle p_T^2 \rangle$ increases with A in p-A, with centrality in A-A

g

g

J/₩

 \mathbf{SPS}

RHIC

random walk of projectile gluon $\Rightarrow p - A$:

$$\langle p_T^2 \rangle_{pA} = \langle p_T^2 \rangle_{pp} + N_c^A \delta_0$$

 $\exists N_c^A + 1$ pre-fusion collisions of incident projectile gluon in target and each subsequent collision gives "kick" $\delta(s)$

random walk of pre-fusion projectile and target gluons $\Rightarrow A - A$:

$$\langle p_T^2 \rangle_{AA} = \langle p_T^2 \rangle_{pp} + N_c^{AA} \delta_0$$

with N_c^{AA} sum of subsequent collisions of projectile gluon in target plus those of target gluon in projectile

calculate N_c^A via Glauber, determine $\delta(s)$ from p - Acalculate N_c^{AA} via Glauber, predict $\langle p_T^2 \rangle_{AA}$, IF no new A-A effects

Calculation of N_c^A

number of collisions of projectile nucleon in target

 $N_c = (3/4) 2 R_A n_0 \sigma$

with $\sigma(s) \sim$ nucleon-nucleon cross section

if average fusion at center of target, $N_c^A \simeq (N_c - 1)/2$ normal nuclear absorption shifts fusion point "down-stream", up to maximum $N_c^A \simeq (N_c - 1)$; estimate (K-N-S) gives $N_c^A \simeq 3 \pm 1$

SPS:

$$\langle p_T^2 \rangle_{pU} = 1.49 \pm 0.05 \,\mathrm{GeV}^2 - \langle p_T^2 \rangle_{pp} = 1.25 \pm 0.05 \,\mathrm{GeV}^2 \Rightarrow \delta \simeq 0.05 \,\mathrm{GeV}^2$$

RHIC:

$$\langle p_T^2 \rangle_{pp} = 2.51 \pm 0.21 \text{ GeV}^2 - \langle p_T^2 \rangle_{dAu} = 3.96 \pm 0.28 \text{ GeV}^2 \Rightarrow \delta \simeq 0.3 \text{ GeV}^2$$

* different value of N_c^A only shifts scale of N_c^{AA}

transverse momentum dynamics same at RHIC and SPS, only kick $\delta(s)$ differs

broadening correctly reproduced by Glauber based on

- initial state parton scattering
- normal nuclear absorption

no evidence for new behaviour

(direct J/ψ suppression, J/ψ formation by recombination)

Conclusions

SPS (Pb-Pb, In-In) and RHIC (Au-Au) data indicate

- onset of $\psi' \sim \chi_c$ suppression around $\epsilon \simeq 1 1.5 \text{ GeV}/\text{fm}^3$
- approximately constant $S_{J/\psi} \simeq 0.6$ above that (no significant direct J/ψ suppression)

Agrees with present knowledge of in-medium J/ψ behaviour in finite temperature QCD

Further Tests:

more precise ψ' data (NA60)

direct χ_c data (?)

onset of direct J/ψ suppression (LHC)

NB: recombination \rightarrow onset of J/ψ enhancement