

Germán Rodrigo IFIC Valencia

Santiago de Compostela, Feb 2006

- Why higher orders at hadron colliders?
- Twistors, MHV amplitudes and recursion relations
- Conclusions

Particle physics has entered the LHC era

goal of the LHC:

proton-proton collisions $\sqrt{s} = 14 \text{ TeV}$

NEW PHYSICS at the TeV energy scale

The LHC is a QCD machine

accurate QCD predictions for high-multiplicity final states

 to evaluate signal and background processes for new physics searches

• to explore QCD in a new high-energy regime

QCD is the toolkit for discovering physics beyond the SM

Hadronic colliders

precision QCD at hadron colliders

what limits the precision?

- the order of the perturbative expansion
- the uncertainty in the input parton distribution functions

Poor (off) description from LO predictions
 NLO first reliable estimate of the central value
 NNLO first serious estimate of the error 6

Germán Rodrigo

FIC Valencia

Anatomy of a NNLO calculation

2 parton final states

2-loop \otimes tree-level |1-loop |²

3 parton final states

1-loop ⊗ tree-level |tree-level |²: 2+1_{unresolved}

3+1

4 parton final states

tree-level ²: 2+2

Collinear and soft singularities exactly cancel between tree-level and loop contributions

100000000

 $p p \rightarrow jet + X$

000000000000000

00000000000000000

/00000000000000000

not all NLO corrections are known!

the more external coloured particles, the more difficult the NLO pQCD calculation

Example: $pp \rightarrow t\bar{t}b\bar{b} + X$ background to *ttH*

LO $O(\alpha_{s}^{4})$ cross section has a large renormalisation scale dependence! 8

Loops and Legs

NLO whish list

1.	$pp \rightarrow WW + jet$	
2.	$pp \rightarrow H + 2 jets$	background to VBF Higgs production
3.	$pp \rightarrow t \overline{t} b \overline{b}$	
4.	$pp \rightarrow t \ \overline{t} + 2 \ jets$	background to $t \overline{t} H$
5.	$pp \rightarrow W W b \overline{b}$	
6.	$pp \rightarrow V + 3 jets$	general background to new physics
7.	$pp \rightarrow VV + 2 jets$	background to $W W \rightarrow H \rightarrow WW$
8.	$pp \rightarrow V V V + jet$	background to SUSY trilepton

NLO whish list

1.	$pp \rightarrow WW + jet$	
2.	$pp \rightarrow H + 2 jets$	background to VBF Higgs production
3.	$pp \to t \overline{t} b \overline{b}$	
4.	$pp \rightarrow t \overline{t} + 2 jets$	backgroup t t t H
5.	$pp \rightarrow W W b \overline{b}$	
6.	$pp \rightarrow V + 3 je^{-1}$	general background to new physics
7.	$pp \rightarrow VV + 2 jets$	background to $W W \rightarrow H \rightarrow WW$
8.	$pp \rightarrow V V V + jet$	background to SUSY trilepton

Resummations

pQCD at fixed order (LO,NLO,...) not always reliable

Monte Carlo tools

Parton shower Monte Carlo underestimate the high-p_T region

SUSY signal less clear with and a signal less clear with and a signal less clear with and a signal less clear with a sign

adequate Monte Carlo tools needed to describe backgrounds

Perturbative asymmetries in nucleon's sea [Catani, de Florian, GR, Vogelsang]

NNLO perturbative evolution generates a flavour asymmetry which is proportional to the valence content of the nucleon

$$(s-\overline{s})(Q^{2}) = U^{(-)}(Q, Q_{0}) \left[(s-\overline{s})(Q_{0}^{2}) + \frac{1}{N_{f}} \left(\frac{U^{(\nu)}(Q, Q_{0})}{U^{(-)}(Q, Q_{0})} - 1 \right) f^{(\nu)}(Q_{0}^{2}) \right]$$
at LO no $q \rightarrow q$ ' $P_{qq'}^{S} = 0$
at NLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$
at NNLO $q \rightarrow q q$ ' \overline{q} ' but $P_{qq'}^{S} = P_{q\overline{q}'}^{S}$

Multi-partonic amplitudes

Multi-jet production is the main signature at LHC, both for signal and background

Brute force calculation soon saturates computer capacity

- number of Feynman diagrams grows exponentially
- overlapping IR singularities at higher-orders
- complicated structure of multi-partonic phase-space

Key to efficient computation is recycling:

Der Grüne Punkt – Duales System Deutschland AG

Multipartonic amplitudes

Witten's idea [hep-th/0312171] of a duality between **SYM** and topological string theories in twistor space

new developments for the calculation of multipartonic scattering amplitudes

Recursion relations

- Off-shell (Berends-Giele 1987)
- MHV (CSW Cachazo-Svrcek-Witten)
- BCFW (Britto-Cachazo-Feng-Witten)

Helicity basis+colour decomposition

Expressions simplify by using "right variables" (1) Four-dimensional spinors of definite helicity $|p^{\pm}\rangle = \frac{1}{2}(1\pm\gamma_5)\psi(p)$, $\langle p^{\pm}| = \overline{\psi_{\pm}(p)}$ $\langle ij \rangle = \langle i^{-}|j^{+} \rangle, \quad [ij] = \langle i^{+}|j^{-} \rangle, \quad s_{ij} = \langle ij \rangle [ji]$

Vector polarization

$$\epsilon_{\mu}^{\pm}(k,\xi) = \pm \frac{\langle \xi^{\mp} | \gamma_{\mu} | k^{\mp} \rangle}{\sqrt{2} \langle \xi^{\mp} | k^{\pm} \rangle}$$

equivalent to axial gauges

(2) for n-gluons, tree level

$$M_{n}(\{p_{i}, h_{i}, a_{i}\}) = \sum_{P(1,...,n)} Tr(T^{a_{1}}...T^{a_{n}}) A_{n}(\{p_{i}, h_{i}\})$$
SU(N_C) generators in the fundamental representation
$$Colour subamplitude:$$
momenta and helicities

n-gluon amplitude

n	# diagrams	# colour-ord diagrams
4	4	3
5	25	10
6	220	36
7	2485	133
8	34300	501
9	559405	1991
10	10525900	7225

Off-shell recursion relations

[Berends,Giele]

$$M(1_q; 2, ..., n-1; n_{\bar{q}}) = \sum_{P(2,...,n-1)} (T^{a_2} ..., T^{a_{n-1}}) A(1_q; 2, ..., n-1; n_{\bar{q}})$$

Off-shell spinorial currents

$$S(1_q; 2, ..., m) = -\sum_{k=1}^{m-1} S(1_q; 2, ..., k) J(k+1, ..., m) \frac{1}{p_{1,m} - m}$$

the gluonic current particularly simple for some helicity configurations

$$J^{\mu}(i^{+},...,j^{+}) = \frac{\langle \xi | \gamma^{\mu} p_{i,j} | \xi \rangle}{\sqrt{2} \langle \xi i \rangle \langle i(i+1) \rangle ... \langle j \xi \rangle}$$

Multi-gluonic amplitudes at tree level

all gluon helicities positive or only one negative helicity

$$A_n(1^+,...,m^{\pm},...,n^+)=0$$

two negative helicities (*Maximal Helicity Violating* amplitudes) rather simple [Parke &Taylor, 1986]

$$A_n(1^+, \dots, m_1^-, \dots, m_2^-, \dots, n^+) = i \frac{\langle m_1 m_2 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle (n-1) n \rangle \langle n1 \rangle}$$

proved via *recursion relations* [Berends-Giele, Mangano-Parke-Xu,1988] then next-to-**MHV**, and so on

Motivated by twistor-space structure [Cachazo, Svrcek and Witten (CSW)] define off-shell MHV vertices based on Parke-Taylor amplitudes

$$V(1^{-},2^{-},3^{+},...,n^{+};P^{+}) = i \frac{\langle 12 \rangle^{4}}{\langle 12 \rangle ... \langle (n-1)n \rangle \langle nP \rangle \langle P1 \rangle}$$

continue spinor off-shell ($P^2 \neq 0$): $\langle i P \rangle = \eta \sum_{j=1}^{n} \langle i^- | k_j | q^- \rangle$ where $P = k_1 + k_2 + ... + k_n$, and q auxiliary, $q^2 = 0$

Non-MHV amplitudes obtained by sewing MHV vertices through scalar propagators

BCFW recursion

Reconstruct scattering amplitude from its singularities

add $z\eta^{\mu}$ on one external particle and subtract it on another such that the shift leaves them on-shell

$$A_n(1,2,\ldots,n) = \sum A_L(\hat{1},2,\ldots,-\hat{p_{1,k}}) \frac{i}{p_{1,k}^2} A_R(\hat{p_{1,k}},k+1,\ldots,\hat{n})$$

Loops using unitarity

 [Brandhuber,Spence,Travaglini,Bern,
 Dixon, Kosower, Bena, Roiban,
 Britto,Cachazo, Feng]

Most results apply to *n*=4 *supersymmetric Yang-Mills*

at tree level QCD is effectively supersymmetric

at one-loop:

 $QCD_{gluons} = (\mathcal{N}=4) + (\mathcal{N}=1) + scalar$

pure QCD [Bern, Dixon, Kosower]

Two-loop ($\mathcal{N}=4$) [Buchbinder, Cachazo][Anastasiou,Bern,Dixon,Kosower]

Massive particles

Twistors developed for massless theories

- Higgs in the heavy top limit [Badger, Dixon,Glover, Khoze] $H = \Phi + \Phi^{\dagger}$ (MHV-like vertices)
- EW bosons [Bern,Forde,Kosower,Mastrolia] external current
- BCFW for massive scalars, vector bosons and fermions

[Badger,Glover,Khoze,Svrcek]

explicit calculations with heavy scalars [Forde,Kosower]

and heavy fermions [GR] using Berends-Giele

LHC is a top factory (NLO whish list)

Multipartonic amplitudes for heavy scalars and fermions

[Ferrario, GR, Talavera]

Combining off-shell and BCFW recursion relations

$$A_{n}(1_{s};2^{+},...,n-1^{+},n_{s})=im^{2}\frac{[2|\prod_{k=3}^{n-2}(y_{1,k}-p_{k}p_{1,k-1})|n-1]}{y_{12}y_{1,3}...y_{1,n-2}\langle\langle 2,n-1\rangle\rangle}$$

where
$$\langle \langle i, j \rangle \rangle = \langle i(i+1) \rangle ... \langle (j-1)j \rangle$$
 and $y_{1,k} = p_{1,k}^2 - m^2$

SUSY-like Ward identities [Schwinn,Weinzierl]

$$A_{n}(1_{q}^{+};2^{+},...,n-1^{+};n_{\bar{q}}^{-})=0$$

$$A_{n}(1_{q}^{+};2^{+},...,n-1^{+};n_{\bar{q}}^{+})=\frac{m}{\beta_{+}\langle 1n\rangle}A_{n}(1_{s};2^{+},...,n-1^{+};n_{s})$$

- fermionic amplitude interesting by its own
- scalar amplitude of use in the unitarity method
- building block for other helicity configurations 26

0000

Conclusions

QCD is the toolkit for discovering new physics at hadron colliders

at least one-loop (NLO), NNLO better

and many legs

resummations beyond NLL

• Twistor inspired methods may provide an important phenomenological impact

still integration over *phase-space* non-trivial, and quite CPU time consuming

BACKUP

G.Rodrigo, JHEP 0509 (2005) 042

Spinors for massive fermions can be constructed from two light-like vectors

$$p_{1}^{\mu} = \beta_{+} \hat{p}_{1}^{\mu} + \beta_{-} \hat{p}_{2}^{\mu}$$

$$p_{1}^{\mu} = \beta_{-} \hat{p}_{1}^{\mu} + \beta_{+} \hat{p}_{2}^{\mu} \qquad \beta_{\pm} = (1 \pm \beta)/2 \qquad \beta = \sqrt{1 - 4m^{2}/s_{12}}$$

preserves momentum conservation. The corresponding spinors are

$$\bar{u}_{\pm}(p_{1},m) = \frac{\beta_{\pm}^{-1/2}}{\langle 2^{\pm} | 1^{\mp} \rangle} \langle 2^{\mp} | (p_{1}+m) \\ v_{\pm}(p_{2},m) = \frac{\beta_{\pm}^{-1/2}}{\langle 2^{\pm} | 1^{\mp} \rangle} (p_{2}-m) | 1^{\pm} \rangle$$

and in the massless limit

