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Resolving the Nucleus at High Energy

: Low Energy
Radiated gluons have the
same size (1/Q?) - the number Gluon
of partons increase due to the oy
increased longitudinal phase space: '
nucleus becomes a dense system
High Energy

of gluons

QCD in the strong color field limit
novel universal properties of theory



A New Paradigm of QCD: CGC

In 1/x Extended Scaling Double Log

Region Region

DGLAP
Region

Q

Saturation: dense system of gluons (all twist)

Extended scaling: dilute system -anomalous dimension

DGLAP: collinearly factorized pQCD



pA as a probe of high energy QCD

* Multiplicities (dominated by p, < Qy):
energy, rapidity, centrality dependence

** Single particle production: hadron,photon,dilepton
rapidity, p;, centrality dependence

% Fixed p,: vary rapidity (evolution in x)
% Fixed rapidity: vary p; (transition from dense to

dilute)
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Averge P:



CGC: qualitative expectations

Classical (multiple elastic scattering):
P > Q). : enhancement (Cronin effect)

R, =1+ (Q2/ps%) log pi*/A%+ ..

R4 (p; ~ Q.) ~ log A

position and height of enhancement are increasing with centrality

Evolution in x:
can show analytically the peak disappears as energy/rapidity grows

and levels off at R , ~ A0 < 1

These expectations are confirmed at RHIC






o, d Au n=0 Min. Bias | I ,
4 o dAuh 1 -32MinBias T ‘
1o e e
a | iy “~————_ enhancement
LI = ===
8 [ e
Eﬂﬂ__ **i'
Tos " + + +
e ++‘H T suppression
0.2 'I'+
n_....|....|....|....|....|....|....|....|....|....

BRAHMS ' ' ' "~ p;[Ge



Single Hadron Production in pA
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N:, N, are dipoles in fundamental and adjoint
representation and satisfy the JIMWLK evolution equation

Dumitru, Hayashigaki, Jalilian-Marian NPA765 (2006) 464
Baier, Mehtar-Tani, Schiff NPA764 (2006) 515



Models of Dipole Cross Section

1[CF 9 Q]W('Pt,Y)

N(Tt,Y) = . A e oo
Wre XY ) = He+ Oy, V)
log(1/12Q*
Ay = (1-7) Vi

AY + log(1/r2Q2) + dVY

Dumitru, Hayashigaki, Jalilian-Marian (DHJ), NPA 2006



Hadron production: rapidity and p: dependence
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What we see is a transition from DGLAP to BFKL to C6C kinematics
Dumitru, Hayashigaki, Jalilian-Marian, NPA 2006



CGC at RHIC?
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g P; dependence is reproduced well at different rapidities
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3K Average P,

Average p; in total multiplicities

Low pt: frag. functions?
[ Average p, with a cutoff



CGC at RHIC?

g P; dependence is reproduced well at different rapidities

2% Overall normalization: need a constant K factor

2 Different K factor at different rapidities

3K Average P,

2 Average p; in total multiplicities
2% Low pt: frag. functions?
A Average p; with a cutoff < p; > =

0
9 doPA—=7 (Pt yp) X

t

pA—70(py,yp) X
_ d2 do
fp;’{'”” Pt d2p; dyp,
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Pion average p: in pp at LHC
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Pion average p: in pA at LHC
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Mid rapidity: anomalous dimension
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Hadron production in dA collisions at RHIC
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both DGLAP and CGC are important



Ratio for dN/dy dzpt
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Application to dA at RHIC
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BRAHMS data / Theory

[ dAu BRAHMS data: minimum bias, h , y = 3.2 ]

i Theory: dAu[CTEQ-LO + CGC + KKP—LG[{h++h_}f?],
minimum bias, v = 3.2] 1
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BK= B-JIMWLK (mean field + large N.)

A closed form equation

| a
"f}}’ <T:-::i,.r> = a_
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[ _(Z)E (?_ 7 (B + (L) = (Tsy) = (B L)

The simplest equation to include unitarity: T < 1
Exhibits extended (geometric) scaling

T(x,r¢) — TriQs(x)]
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