Probing QCD at High Energy:

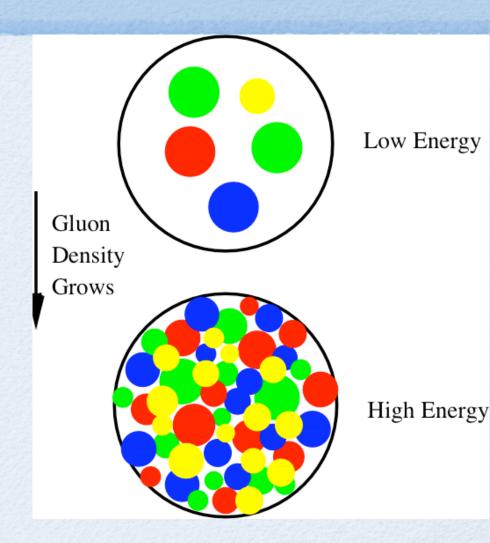
predictions for single hadron production at LHC

Jamal Jalilian-Marian Baruch College

Last call for predictions, May 14th-June 8th, 2007, CERN

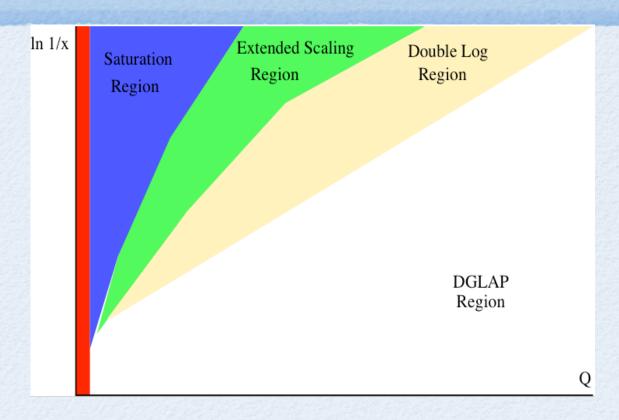
Resolving the Nucleus at High Energy

Radiated gluons have the same size $(1/Q^2)$ - the number of partons increase due to the increased longitudinal phase space: nucleus becomes a dense system of gluons



QCD in the strong color field limit novel universal properties of theory

A New Paradigm of QCD: CGC



Saturation: dense system of gluons (all twist)

Extended scaling: dilute system -anomalous dimension

Double Log: BFKL meets DGLAP

DGLAP: collinearly factorized pQCD

pA as a probe of high energy QCD

- * Multiplicities (dominated by $p_t < Q_s$): energy, rapidity, centrality dependence
- Single particle production: hadron, photon, dilepton rapidity, p_t, centrality dependence
 - \star Fixed p_t: vary rapidity (evolution in x)
 - ★ Fixed rapidity: vary p_t (transition from dense to dilute)

pA as a probe of high energy QCD

- * Multiplicities (dominated by $p_t < Q_s$):
 energy, rapidity, centrality dependence
- Single particle production: hadron, photon, dilepton rapidity, p_t, centrality dependence
 - \star Fixed p_t: vary rapidity (evolution in x)
 - ★ Fixed rapidity: vary p_t (transition from dense to dilute)

Averge Pt

CGC: qualitative expectations

Classical (multiple elastic scattering):

$$p_t >> Q_s$$
: enhancement (Cronin effect)

$$R_{pA} = 1 + (Q_s^2/p_t^2) \log p_t^2/\Lambda^2 + ...$$

$$R_{pA} (p_t \sim Q_s) \sim log A$$

position and height of enhancement are increasing with centrality

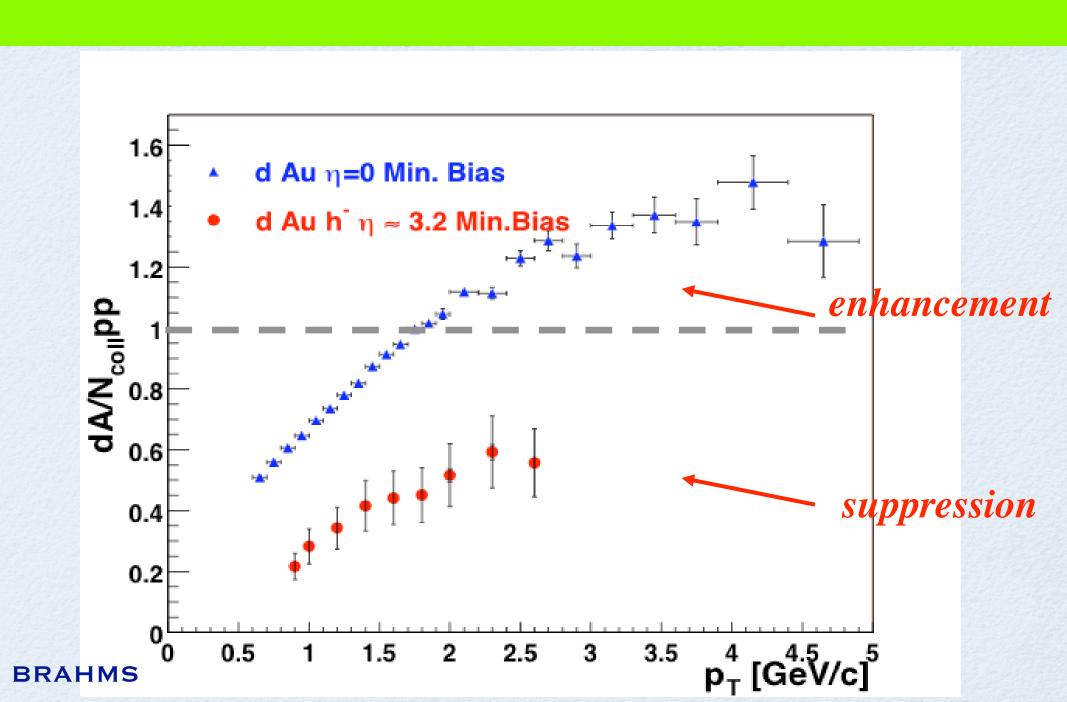
Evolution in x:

can show analytically the peak disappears as energy/rapidity grows and levels off at $R_{\rm pA}\sim A^{-1/6}<1$

These expectations are confirmed at RHIC

CGC vs. RHIC

CGC vs. RHIC



Single Hadron Production in pA

$$\frac{d\sigma^{pA \to hX}}{dY d^{2}P_{t} d^{2}b} = \frac{1}{(2\pi)^{2}} \int_{x_{F}}^{1} dx \, \frac{x}{x_{F}}
\left\{ f_{q/p}(x, Q^{2}) N_{F} \left[\frac{x}{x_{F}} P_{t}, b, y \right] D_{h/q} \left(\frac{x_{F}}{x}, Q^{2} \right) + f_{g/p}(x, Q^{2}) N_{A} \left[\frac{x}{x_{F}} P_{t}, b, y \right] D_{h/g} \left(\frac{x_{F}}{x}, Q^{2} \right) \right\}$$

 N_F , N_A are dipoles in fundamental and adjoint representation and satisfy the JIMWLK evolution equation

Dumitru, Hayashigaki, Jalilian-Marian NPA765 (2006) 464 Baier, Mehtar-Tani, Schiff NPA764 (2006) 515

Models of Dipole Cross Section

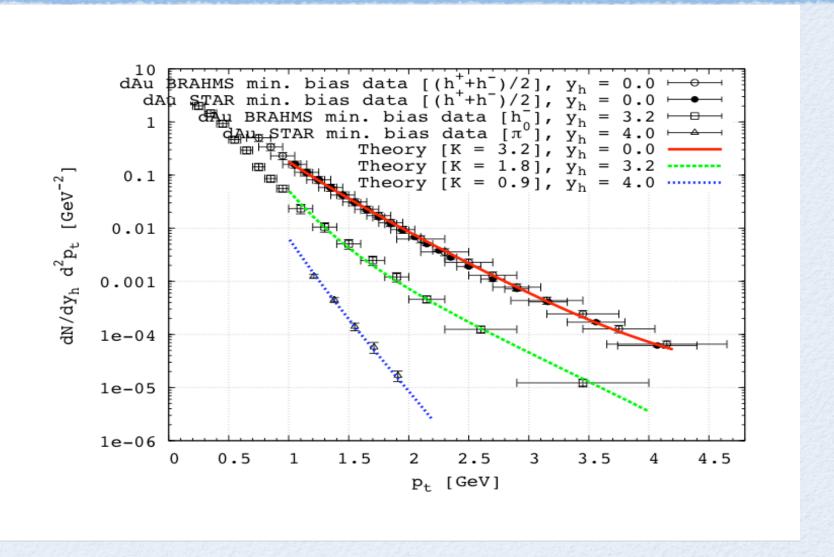
$$\mathcal{N}(r_t, Y) = 1 - e^{-\frac{1}{4} \left[\frac{C_F}{N_c} r_t^2 Q_s^2 \right]^{\gamma(r_t, Y)}}$$

$$\gamma(r_t, Y) = \gamma_s + \Delta \gamma(r_t, Y)$$

$$\Delta \gamma = (1 - \gamma_s) \frac{\log(1/r_t^2 Q_s^2)}{\lambda Y + \log(1/r_t^2 Q_s^2) + d\sqrt{Y}}$$

Dumitru, Hayashigaki, Jalilian-Marian (DHJ), NPA 2006

Hadron production: rapidity and pt dependence



What we see is a transition from DGLAP to BFKL to CGC kinematics Dumitru, Hayashigaki, Jalilian-Marian, NPA 2006

Pt dependence is reproduced well at different rapidities

Pt dependence is reproduced well at different rapidities

Pt dependence is reproduced well at different rapidities

- Overall normalization: need a constant K factor
- Different K factor at different rapidities

- Pt dependence is reproduced well at different rapidities
 - * Overall normalization: need a constant K factor
 - Different K factor at different rapidities
- * Average P_L

- Pt dependence is reproduced well at different rapidities
 - * Overall normalization: need a constant K factor
 - Different K factor at different rapidities
- * Average P_L
 - * Average pt in total multiplicities

- Pt dependence is reproduced well at different rapidities
 - * Overall normalization: need a constant K factor
 - Different K factor at different rapidities
- * Average P_L
 - * Average pt in total multiplicities
 - * Low pt: frag. functions?

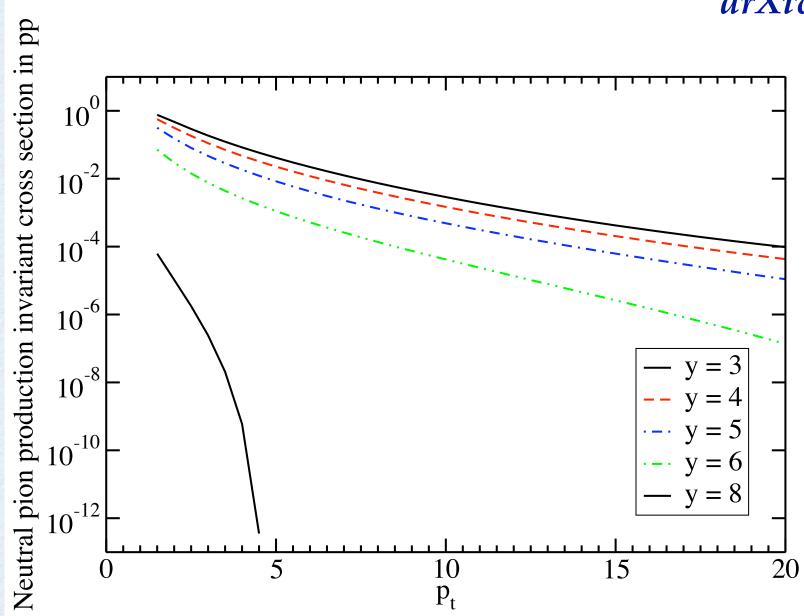
- Pt dependence is reproduced well at different rapidities
 - * Overall normalization: need a constant K factor
 - Different K factor at different rapidities
- * Average P_L
 - * Average pt in total multiplicities
 - * Low pt: frag. functions?
 - Average pt with a cutoff

- Pt dependence is reproduced well at different rapidities
 - Overall normalization: need a constant K factor
 - Different K factor at different rapidities
- Average P_L
 - * Average p_t in total multiplicities
 - Low pt: frag. functions?
 - Low pt: frag. functions?

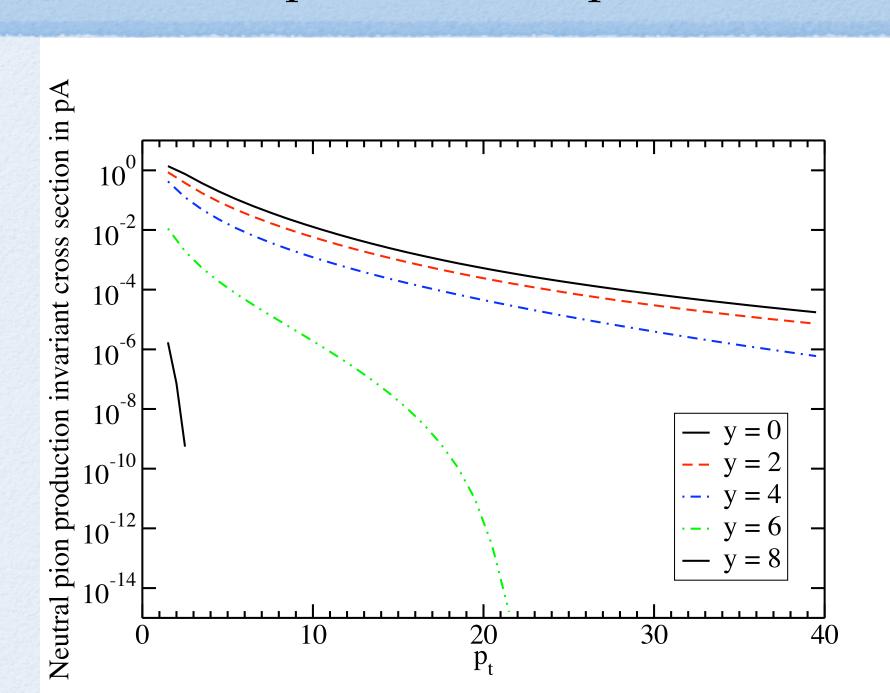
 Average p_t with a cutoff $< p_t > \equiv \frac{\int_{p_t^{min}} d^2p_t \, p_t \, \frac{d\sigma^{pA \to \pi^0(p_t, y_h) \, X}}{d^2p_t \, dy_h}}{\int_{p_t^{min}} d^2p_t \, \frac{d\sigma^{pA \to \pi^0(p_t, y_h) \, X}}{d^2p_t \, dy_h}}$

Pion production in pp at LHC

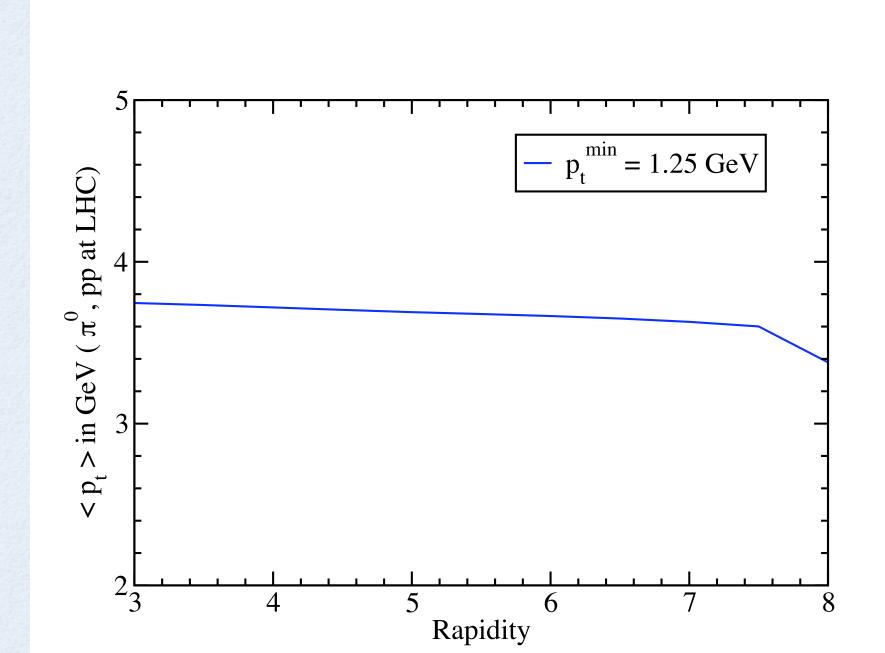
arXiv:0704.2628



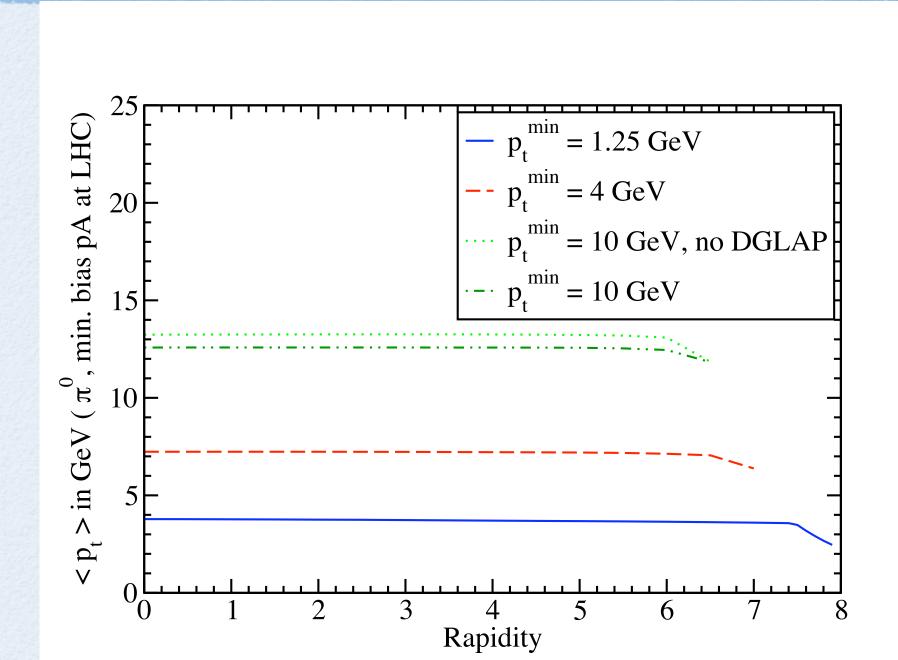
Pion production in pA at LHC



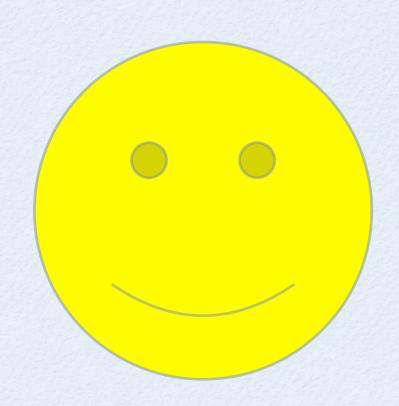
Pion average pt in pp at LHC



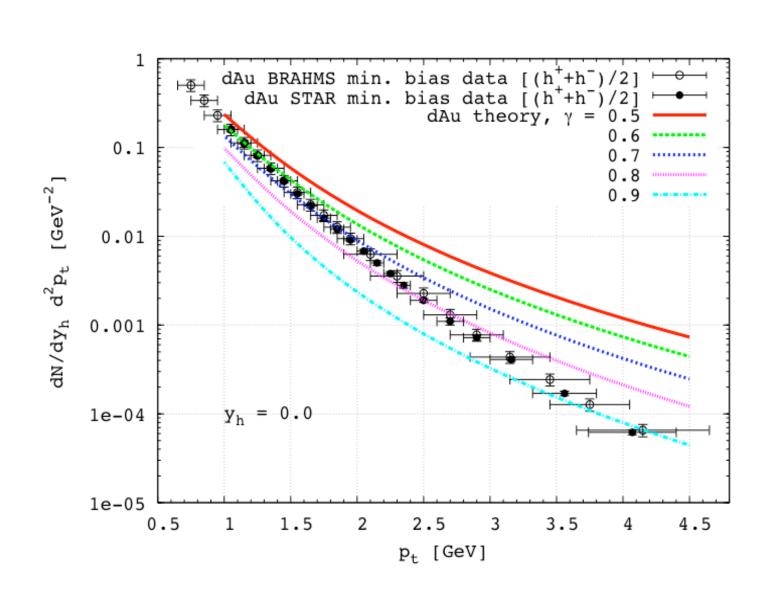
Pion average pt in pA at LHC



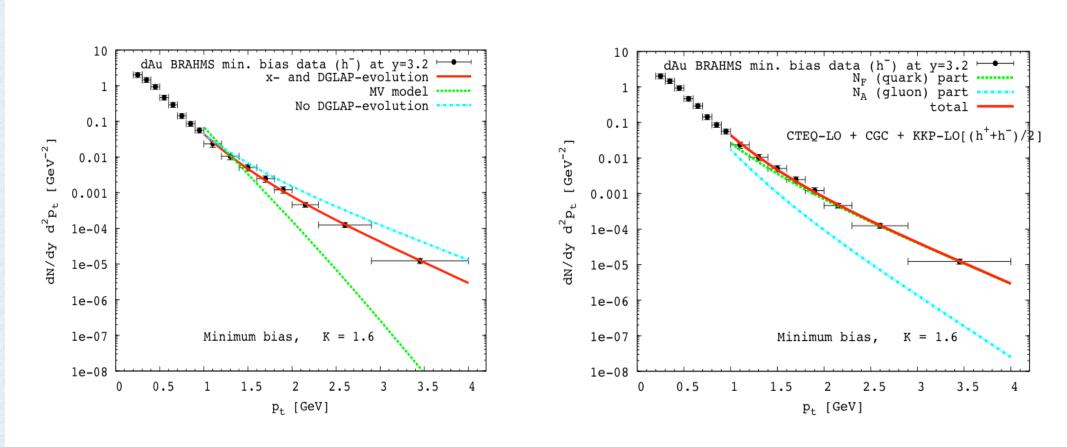
Looking forward to LHC



Mid rapidity: anomalous dimension

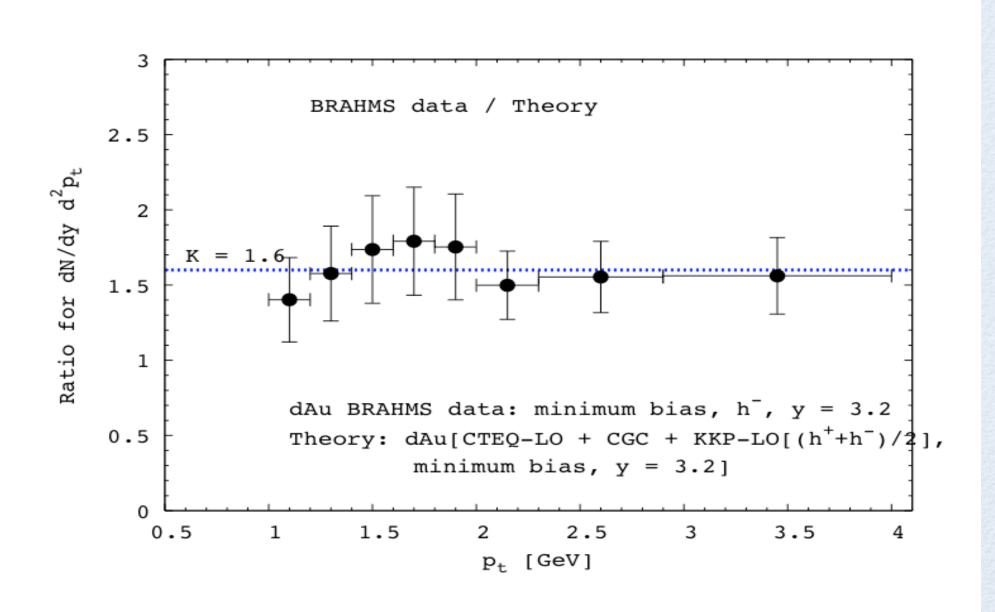


Hadron production in dA collisions at RHIC



particle production at forward rapidity is dominated by quark scattering both DGLAP and CGC are important

Application to dA at RHIC



BK = B-JIMWLK (mean field + large N_c)

A closed form equation

$$\partial_Y \langle T_{\mathbf{x}\mathbf{y}} \rangle = \frac{\bar{\alpha}}{2\pi} \int d^2z \, \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2 (\mathbf{z} - \mathbf{y})^2} \left[\langle T_{\mathbf{x}\mathbf{z}} \rangle + \langle T_{\mathbf{z}\mathbf{y}} \rangle - \langle T_{\mathbf{x}\mathbf{y}} \rangle - \langle T_{\mathbf{x}\mathbf{z}} \rangle \langle T_{\mathbf{z}\mathbf{y}} \rangle \right]$$

The simplest equation to include unitarity: T < 1
Exhibits extended (geometric) scaling

$$\mathbf{T}(\mathbf{x}, \mathbf{r_t}) o \mathbf{T}[\mathbf{r_t} \mathbf{Q_s}(\mathbf{x})]$$

$$egin{aligned} for \ \mathbf{Q_s} < \mathbf{Q} < rac{\mathbf{Q_s^2}}{\Lambda_{\mathbf{QCD}}} \end{aligned}$$