Fluctuation Effects on R_{pA} at High Energy

Kozlov Misha

Bielefeld University

Workshop on Heavy Ion Collisions at the LHC CERN, 2007

Kozlov, Shoshi, Xiao

arXiv:hep-ph/0612053

- Motivations
 - QCD evolution equations at high energy
 - Effects of Pomeron Loops/Gluon Nnumber Fluctuations
- **2** The ratio R_{pA} in the geometric and diffusive scaling regime
 - R_{pA} at high energy
 - Unintegrated gluon distribution of an evolved hadron
 - R_{pA} in geometric and diffusive scaling regimes
- Summary

- Motivations
 - QCD evolution equations at high energy
 - Effects of Pomeron Loops/Gluon Nnumber Fluctuations
- $^{\circ}$ The ratio R_{pA} in the geometric and diffusive scaling regime
 - \bullet R_{pA} at high energy
 - Unintegrated gluon distribution of an evolved hadron
 - R_{pA} in geometric and diffusive scaling regimes
- Summary

QCD evolution equations at high energy

Kovchegov equation (fan diagrams):

$$\frac{\partial}{\partial Y}\langle T \rangle_{Y} \propto \alpha_{S} \left[\langle T \rangle_{Y} - \langle T \rangle_{Y}\langle T \rangle_{Y} \right]$$

- non-linear evolution, satisfies unitarity;
- "mean field" equation;

- Pomeron loop equations (enhanced diagrams):
 - Langevin-type version:

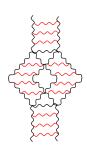
$$rac{\partial}{\partial Y}T_{\mathsf{Y}} \propto lpha_{\mathsf{S}}\left[T_{\mathsf{Y}}-T_{\mathsf{Y}}T_{\mathsf{Y}}+\sqrt{lpha_{\mathsf{S}}T}\,
u
ight]$$

Hierarchy:

$$\frac{\partial}{\partial \mathbf{Y}} \langle T \rangle_{\mathbf{Y}} \quad \propto \quad \alpha_{\mathbf{S}} \left[\langle T \rangle_{\mathbf{Y}} - \langle T \ T \rangle_{\mathbf{Y}} \right]$$

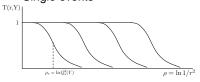
$$\frac{\partial}{\partial \mathbf{Y}} \langle T \ T \rangle_{\mathbf{Y}} \quad \propto \quad \alpha_{\mathbf{S}} \left[\langle T \ T \rangle_{\mathbf{Y}} - \langle T \ T \ T \rangle_{\mathbf{Y}} + \frac{\alpha_{\mathbf{S}}^2}{\mathbf{S}} \langle T \rangle_{\mathbf{Y}} \right]$$

- BFKL Pomeron Calculus, Effective Hamiltonian approach, ...
- describe Gluon Number Fluctuations/Pomeron Loops!



Effects of Pomeron Loops/Gluon Nnumber Fluctuations

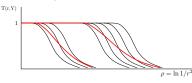
Single events



Geometric scaling

$$T(r, Y) = T(r^2 Q_s^2(Y))$$

Average over events



Diffusive scaling

$$\langle T(r, Y) \rangle = T \left(\frac{\ln(\tilde{Q}_{s}^{2}(Y) r^{2})}{\sqrt{\alpha_{s}Y/\ln^{3}(1/\alpha_{s}^{2})}} \right)$$

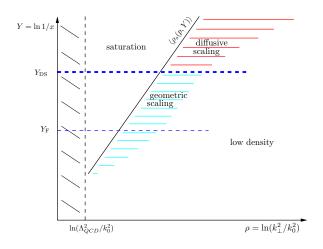
• Statistical physics \iff hdQCD: $\langle T(\rho-\rho_s)\rangle=\int d\rho_s \ P(\rho_s) \ T(\rho-\rho_s)$ [lancu,Mueller,Munier (2004)]

where
$$P(\rho_{\rm S})=rac{1}{\sqrt{2\pi\sigma^2}}\exp[rac{(
ho_{\rm S}-\langle
ho_{\rm S}
angle)^2}{2\sigma^2}], \qquad \sigma^2=\langle
ho_{\rm S}^2
angle-\langle
ho_{\rm S}
angle^2={\it D}_{
m dc}lpha_{\rm S}\,{
m Y}$$

 \implies shape of $\langle T \rangle$ becomes flatter with increasing Y

"Phases" of an evolved hadron

•
$$Y_{DS} \sim \frac{1}{D_{dc}\alpha_s}$$
 $(\sigma^2 \simeq 1)$



- Motivations
 - QCD evolution equations at high energy
 - Effects of Pomeron Loops/Gluon Nnumber Fluctuations
- 2 The ratio R_{pA} in the geometric and diffusive scaling regime
 - R_{pA} at high energy
 - Unintegrated gluon distribution of an evolved hadron
 - R_{pA} in geometric and diffusive scaling regimes
- Summary

R_{pA} at high energy

Studied:

$$R_{pA} = rac{h_A(k_{\perp}, Y)}{A^{rac{1}{3}} h_p(k_{\perp}, Y)} \; , \qquad \qquad R_{pA} = rac{arphi_A(k_{\perp}, Y)}{A^{rac{1}{3}} arphi_p(k_{\perp}, Y)}$$

"Modified" unintegrated gluon distribution: [Braun (2000)]

$$h_A(k_{\perp}, Y) = \frac{N_c}{(2\pi)^3 \alpha_s} \int d^2 x_{\perp} e^{ik_{\perp} \cdot x_{\perp}} \nabla_{x_{\perp}}^2 T_A(x_{\perp}, Y)$$

"W-W" unintegrated gluon distribution: [Kovchegov, Mueller (1998)]

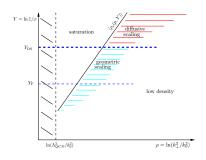
$$\varphi_{A}(k_{\perp}, Y) = \frac{N_{c}}{(2\pi)^{3} \alpha_{s}} \int \frac{d^{2}x_{\perp}}{x_{\perp}^{2}} e^{ik_{\perp} \cdot x_{\perp}} T_{A}(x_{\perp}, Y)$$

⇒ lead to the same results

Initial conditions: Nucleus: MV-Model

Proton: Dipole/MV-Model, $Q_s^2(A) = A^{1/3}Q_s^2(p)$

Unintegrated gluon distribution of an evolved hadron



Geometric scaling regime (fixed α_s), Y ≪ 1/D_{dc}α_s:

$$h_A(\rho - \rho_s(A, Y)) = h_A^{\text{max}} \gamma_c e^{-\gamma_c(\rho - \rho_s(A, Y))} \left(\rho - \rho_s(A, Y) + \frac{1}{\gamma_c}\right)$$

• Diffusive scaling regime (fixed α_s), Y $\gg 1/D_{dc}\alpha_s$:

$$\langle \textit{h}_{\textit{A}}(\rho - \rho_{\textit{s}}(\textit{A}, \textit{Y})) \rangle \simeq \frac{\textit{h}_{\textit{A}}^{\textit{max}}}{\sqrt{2\pi\sigma^2}} \; \left(\frac{1 + \gamma_{\textit{c}}}{\gamma_{\textit{c}}} \right) \; \exp\left[-\frac{(\rho - \langle \rho_{\textit{s}}(\textit{A}, \textit{Y}) \rangle)^2}{2\sigma^2} \right]$$

R_{pA} in geometric and diffusive scaling regimes

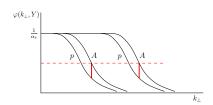
• Geometric scaling regime (fixed α_s): [Mueller (2003)], [lancu,ltakura,Triantafyllopoulos (2004)]

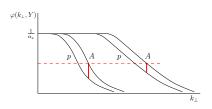
$$R_{pA}(k_{\perp}, Y, A) \simeq \frac{1}{A^{\frac{1}{3}(1-\gamma_c)}}$$

- partial gluon shadowing;
- basically k_⊥ and Y independent;
- Diffusive scaling regime (fixed α_s): [Kozlov, Shoshi, Xiao (2006)]

$$R_{pA} = \frac{1}{A^{\frac{1}{3}\left(1 - \frac{\Delta \rho_s}{2\sigma^2}\right)}} \; \left[\frac{k_\perp^2}{\bar{Q}_s^2(A, \, Y)}\right]^{\frac{\Delta \rho_s}{\sigma^2}}$$

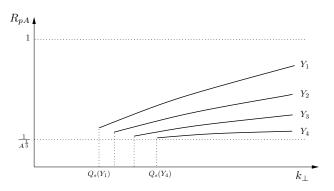
- increasing gluon shadowing with Y
- total shadowing, $R_{pA} = \frac{1}{A^{1/3}}$, for $Y \to \infty$
- decreasing k_{\perp} dependence with Y





General features of R_{pA} in diffusive scaling region

$$Y_1 \leq \, Y_2 \leq \, Y_3 \leq \, Y_4$$



- slope of R_{pA} becomes smaller with increasing Y
- R_{pA} goes towards $1/A^{1/3}$ with increasing Y

- Motivations
 - QCD evolution equations at high energy
 - Effects of Pomeron Loops/Gluon Nnumber Fluctuations
- 2 The ratio R_{pA} in the geometric and diffusive scaling regime
 - R_{pA} at high energy
 - Unintegrated gluon distribution of an evolved hadron
 - R_{pA} in geometric and diffusive scaling regimes
- Summary

Summary

- LHC energy probably large enough to observe Pomeron Loops/Gluons Number Fluctuations effects
- R_{pA} is a good quantity for studying Pomeron Loops/Fluctuations effects at high energies
- With increasing rapidity, shapes of gluon distributions of nucleus and of proton become identical

For the technical details (e.g. precise form of R_{pA} for different unintegrated gluon distributions and different initial conditions):

Kozlov, Shoshi, Xiao

arXiv:hep-ph/0612053

