Multiplicity distributions for $\mathrm{Pb}-\mathrm{Pb}$ and $\mathrm{p}-\mathrm{Pb}$ from a simple model

José Guilherme Milhano

CENTRA/IST (Lisbon)
(with J Dias de Deus and S Abreu)

Heavy Ion Collisions at the LHC: Last call for predictions

- CERN, 29 May 2007 -

the model

- a very simple model for distribution of rapidity extended objects (SPM strings or colour glasma fields) created in heavy ion collision
[Glasma] ~ [Effective Strings] ~ [Particle Density]
— linear growth with distance to beam rapidity + asymptotic saturation

$$
\frac{\partial \rho}{\partial(-\Delta)}=\frac{1}{\delta}\left(\rho-A \rho^{2}\right), \quad \Delta=|y|-Y
$$

-o standard (1845-1847) logistic equation for dynamics of populations

\bigcirc the model

- Y-dependent limiting value of ρ determined by saturation condition

$$
\frac{\partial \rho}{\partial(-\Delta)}=0 \longrightarrow \rho_{Y}=\frac{1}{A}
$$

- separation between positive curvature (low density) and negative curvature (high density)

$$
\left.\frac{\partial^{2} \rho}{\partial^{2}(-\Delta)}\right|_{\Delta_{0}}=0 \longrightarrow \rho_{0} \equiv \rho\left(\Delta_{0}, Y\right)=\frac{\rho_{Y}}{2}
$$

- integrating the logistic equation ...

\bigcirc the model

$$
\rho(\Delta, Y)=\frac{\rho_{Y}}{e^{\frac{\Delta-\Delta_{0}}{\delta}}+1}
$$

symmetric nucleus-nucleus collisions

- in the SPM particle density is proportional (once colour reduction factor taken into account) to the average number of participants from one nucleon in both dense and dilute regimes.
$\rho \propto N_{A}$
- normalized particle density at mid-rapidity related to gluon distribution at small-x.
:: will be reduced by r.c. effects in evolution [Albacete's talk]::
$\rho \propto e^{\lambda Y}$
- dense-dilute separation scale linearly decreasing with Y (from energy conservation).

$$
\Delta_{0}=-\alpha Y, \quad 0<\alpha<1
$$

- re-writing particle density in rapidity

$$
\rho \equiv \frac{d N}{d y}=\frac{N_{A} \cdot e^{\lambda Y}}{e^{\frac{|y|-(1-\alpha) Y}{\delta}}+1}
$$

$\circlearrowleft \mathrm{Pb}-\mathrm{Pb}$ at the LHC (0-I0\% central)

$$
\begin{aligned}
\lambda & =0.247 \\
\alpha & =0.269 \\
\delta & =0.67
\end{aligned}
$$

from fit to RHIC data
[PHOBOS] Nucl.Phys.A757, 28 (2005)
Brogueira, Dias de Deus, Pajares,
Phys. Rev. C75:054908 (2007)

$$
N_{P b}=173.3
$$

from Glauber calculation

$\bigcirc \mathrm{p}-\mathrm{Pb}$ at the LHC ($0-20 \%$ central)

formulae changed to account for asymmetric geometry, and shift of system CM relatively to LAB CM.

$\sqrt{s}=8.8 \mathrm{TeV}$

$N_{\text {part }}=13.07$

from Glauber calculation

Opseudo-rapidity distributions

- very large uncertainties: just pictures not predictions

