Multiplicity distributions for Pb-Pb and p-Pb from a simple model

José Guilherme Milhano

CENTRA/IST (Lisbon)

(with J Dias de Deus and S Abreu)

Othe model

a very simple model for distribution of rapidity extended objects
(SPM strings or colour glasma fields) created in heavy ion collision

linear growth with distance to beam rapidity + asymptotic saturation

$$\frac{\partial \rho}{\partial (-\Delta)} = \frac{1}{\delta} (\rho - A\rho^2), \qquad \Delta = |y| - Y$$

standard (1845-1847) logistic equation for dynamics of populations

Othe model

• Y-dependent limiting value of ρ determined by saturation condition

$$\frac{\partial \rho}{\partial (-\Delta)} = 0 \longrightarrow \rho_Y = \frac{1}{A}$$

 separation between positive curvature (low density) and negative curvature (high density)

$$\left. \frac{\partial^2 \rho}{\partial^2 (-\Delta)} \right|_{\Delta_0} = 0 \longrightarrow \rho_0 \equiv \rho(\Delta_0, Y) = \frac{\rho_Y}{2}$$

integrating the logistic equation ...

Othe model

$$\rho(\Delta, Y) = \frac{\rho_Y}{e^{\frac{\Delta - \Delta_0}{\delta}} + 1}$$

O symmetric nucleus-nucleus collisions

• in the SPM particle density is proportional (once colour reduction factor taken into account) to the average number of participants from one nucleon in both dense and dilute regimes.

$$\rho \propto N_A$$

 normalized particle density at mid-rapidity related to gluon distribution at small-x.

:: will be reduced by r.c. effects in evolution [Albacete's talk]::

$$\rho \propto e^{\lambda Y}$$

 dense-dilute separation scale linearly decreasing with Y (from energy conservation).

$$\Delta_0 = -\alpha Y, \quad 0 < \alpha < 1$$

re-writing particle density in rapidity

$$\rho \equiv \frac{dN}{dy} = \frac{N_A \cdot e^{\lambda Y}}{e^{\frac{|y| - (1 - \alpha)Y}{\delta}} + 1}$$

OPb-Pb at the LHC (0-10% central)

$$\lambda = 0.247$$

$$\alpha = 0.269$$

$$\delta = 0.67$$

from fit to RHIC data

[PHOBOS] Nucl.Phys. A757, 28 (2005)

Brogueira, Dias de Deus, Pajares, Phys. Rev. C75:054908 (2007)

$$N_{Pb} = 173.3$$

from Glauber calculation

Kharzeev, Levin, Nardi, Nucl. Phys. A747, 609 (2005)

Op-Pb at the LHC (0-20% central)

 formulae changed to account for asymmetric geometry, and shift of system CM relatively to LAB CM.

$$N_{part} = 13.07$$

from Glauber calculation

Kharzeev, Levin, Nardi, Nucl. Phys. A747, 609 (2005)

Opseudo-rapidity distributions

• very large uncertainties: just pictures not predictions

