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OUTLINE

@ Balitsky-Kovchegov evolution equation with running coupling


 
 ⇒ Recent developments


 
 ⇒ Strong reduction of the speed of evolution

@ Phenomenological consequences: 


 
 ⇒ Energy dependence of multiplicity densities in A-A collisions


 
 ⇒ Determining initial conditions: RHIC @ √s=130 and 200 GeV


 
 ⇒ Extrapolation to central Pb-Pb collisions @ √s=5.5 TeV



BK with running coupling 

• The quark contribution to the BK equation has been calculated recently resumming 
αsNf contributions to all orders, and then completing  Nf→-6Πβ2 to determine the 
scale for the running of the coupling: 

• However, the two calculations yield different results:

• Balitsky (2006)
• Kovchegov and Weigert (2006)
• E. Gardi et. al. (2006)
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∫
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• KW

• Bal



 @ Why?:  The inclusion of all orders αsNf  contributions brings in new physical 
channels that modify the interaction structure of the equation:

S[S] =
∫

d2z1 d2z2 Ksub [S(x0,w, Y ) S(w, x1, Y )− S(x0, z1, Y ) S(z2, x1, Y )]

R [S] =
∫

d2z K̃run(x0, x1, z) [S(x0, z;Y ) S(z, x1;Y )− S(x0, x1;Y )]

• “Running” term:

• “Subtraction” term:
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Once the two terms are included the two calculations agree with each other!!

JLA and Y. Kovchegov (07)



@ The extra “subtraction” term is numerically important and considerably 
reduces the speed of the evolution:

• Speed reduction due to subtraction term:
~ 30% w.r.t. only running in KW’s scheme

~ 10% w.r.t. only running in Balitsky’s scheme

Caution!!: A particular definition of Qs

N (r = 1/Qs;Y ) = 0.5



@ The energy dependence of the saturation scale from running coupling evolution is 
milder than the one extracted from fits to HERA DIS data 
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; λ ≈ 0.288• Fits to HERA : Golec-Biernat Wüsthoff (98)

• Energy dependence of multiplicity in saturation models for particle production:
Kharzeev-Levin-Nardi

Armesto-Salgado-Wiedemann (05)

Hirano-Nara (04)

CGC
+hydrodynamics

at RHIC
favours λ=0.2

• 
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scaling



Solutions of BK with running couplingϕ(x, k)⇒ × (1− x)4

 @ Particle production in A-A collisions : 
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• kt-factorization ‘a la KLN’
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• 2→1 kinematics • rapidity ↔ pseudorapidity: gluon mass

• Running coupling:

+
Local Hadron Parton Duality

ϕ(x, k) =
∫

d2r

2π2 r2
expik·r N (x, r)



 @ Initial conditions for evolution: Au-Au central collisions at RHIC 
 at √s =130 and 200 GeV   
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• McLerran-Venugopalan i.c.
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                             Things to fix:
⇒ effective gluon mass, m

⇒ Initial saturation scale Q0

⇒ Is there significant evolution prior to √s =130 ?



 @ Initial conditions for evolution: 
Au-Au central collisions at RHIC at √s =130    

 Gluon mass ~ 0.25 GeV  Initial saturation scale
Q0 ~ 1 GeV

PHOBOS data



@ Is there significant evolution prior to √s =130 at central rapidity?: NO!

• Solutions close to the scaling region fail to reproduce RHIC data: No universality
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• RHIC energies are governed by pre-asymptotics effects (MV model: good i.c.)

, ,

PHOBOS data
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Very good agreement with RHIC data with:

                       ⇒ Gluon mass: m= 0.2 ÷ 0.3 GeV


 
 
 
 ⇒ Initial saturation scale: Qs(√s=130 GeV, η=0) = 0.9 ÷ 1.1 GeV


 
 
 
 ⇒ Pre-asymptotic regime: ΔYev ≤ 2

PHOBOS data
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PHOBOS data

Extrapolation to LHC Pb-Pb central collisions at √s=5.5 TeV 
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@ Au-Au data at RHIC energies is compatible with both logarithmic 
and power-law behaviour wrt collision energy 

power-law

logarithmic

this work

@ Logarithmic trend seems to be dictated from lower energies data



SUMMARY

@ Higher order corrections considerably reduce the speed of non-linear evolution
@ Multiplicity densities at RHIC can be reproduced using kt-factorization + solutions 
     of the evolution
 
 
 
 
 ⇒ gluon mass ≈ 0.2 ÷ 0.3 GeV


 
 
 
 ⇒ Qs(√s=130 GeV, η=0) ≈ 0.9 ÷ 1.1 GeV


 
 
 
 ⇒ Pre-asymptotic regime: strong scaling violations 

@ Extrapolation to Pb-Pb central collisions at √s=5.5 TeV yields a central value:

@ Smaller than predictions based on HERA information
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@ Larger than empiric extrapolations from lower energies data



What’s next?

@ Evolution equation:



 ⇒ Gluon contribution to high order corrections

 ⇒ Beyond mean field: Pomeron loops, fluctuations

 ⇒ Impact parameter dependence

 ⇒ Energy conservation
      They all point to a even stronger reduction of the speed of evolution!!

 @ Particle Production:


 ⇒ Factorization breaking terms (Classical YM EOM?)

 ⇒ NLO calculation


 ⇒ Large-x effects

 ⇒ Proper inclusion of non-perturbative effects (CGC + Hydro?)

 ⇒ Better knowledge of pre-equilibrium / thermalization  dynamics 
 	



Back up slides



pt vs mt

differences only in the 
forward region

Extrapolation at η=0 
unaffected 
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Once the subtraction term is added back, the two approaches agree:
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   • The separation procedure is similar in both calculations:

• The differences between the two approaches stem from the choice of the 
subtraction point, w

S[S] =
∫

d2z1 d2z2 Ksub [S(x0,w, Y ) S(w, x1, Y )− S(x0, z1, Y ) S(z2, x1, Y )]



• In Balitsky’s scheme: w = z1 (or z2), the quark’s (anti-q) transverse position :

SBal[S] =
∫

d2z1 d2z2 Ksub [S(x0, z1, Y ) S(z1, x1, Y )− S(x0, z1, Y ) S(z2, x1, Y )]

SKW [S] =
∫

d2z1 d2z2 Ksub [S(x0, z, Y ) S(z, x1, Y )− S(x0, z1, Y ) S(z2, x1, Y )]

• In KW scheme: w = z =, the gluon’s transverse position:

• The kernel of the subtraction contribution is the same in both cases:
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   Leading-Nf       ⇒           All orders Nf  (LCPT)  ⇒  Fourier transform to 

                                                                                   coordinate space

An expansion in term of N’s result in just non-linear terms (N2<<N at small-r)

An expansion in term of N’s also includes linear terms.



SUBTRACTION TERM KERNEL:

• Here: Nf→-6Πβ2 .Part of the gluon contribution is also taken into account



• The subtraction term is larger in KW’s scheme than in Balitsky’s:

• It has the same sign as the running term: It slows down the evolution
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• The subtraction term is larger in KW’s scheme than in Balitsky’s:

• The relative contribution of the subtraction term to the evolution fades away at 
              large rapidity 


