Elliptic flow from pQCD + saturation + hydro model

arXiv:0705.2114 [hep-ph]

Eskola, Kari ^{1, 2} <u>Niemi, Harri ^{1, 2}</u> Ruuskanen, Vesa ^{1, 2}

¹ Department of Physics, University of Jyväskylä, Finland

² Helsinki Institute of Physics, University of Helsinki, Finland

EKRT final state saturation

Eskola, Kajantie, Ruuskanen, Tuominen, Nucl. Phys. B 570 (2000) 379 [hep-ph/9909456]

- Idea: Low-p_T parton production is controlled by saturation among the produced gluons.
- Geometric estimate: Saturation sets in when produced gluons with $p_T > p_0$ fill the whole transverse overlap area of the colliding nuclei

$$N_{AA}(p_0, \Delta y = 1, \sqrt{s}) \cdot \pi / p_0^2 = \pi R_A^2$$
Number of gluons with $p_T > p_0$

- ullet Gives saturation scale p_{sat} for any \sim central AA collision
- If $p_{sat}\gg \Lambda_{QCD}~pQCD$ particles with $p_{T}>p_{sat}$ can give a good estimate of the number of partons and energy produced to midrapidity
- $\tau_{prod} = 1/p_{sat}$

\longrightarrow transverse energy E_T & net baryon number N_B

Initial state for hydrodynamics central collisions:

RHIC
$$\sqrt{s_{NN}} = 200$$
 GeV Au+Au
$$\tau_0 \sim 0.17 \text{ fm/c}$$

$$\varepsilon_{max} \sim 200 \text{ GeV/fm}^3$$

$$dN_{B}/dy = 14.0$$

LHC
$$\sqrt{s_{NN}} = 5500$$
 GeV Pb+Pb $\tau_0 \sim 0.10$ fm/c $\epsilon_{max} \sim 2200$ GeV/fm³ $dN_B/dy = 3.11$

Harri Niemi: Elliptic flow from pQCD + saturation + hydro model

Hydrodynamics for low-p_T hadrons

If equilibration time τ_{therm} < production time τ_{prod} = 1/p_{sat} we can start hydrodynamics immediately after production of the initial state.

$$\partial_{\mu}T^{\mu\nu}(x) = 0$$
 and $\partial_{\mu}j_{B}^{\mu}(x) = 0$,

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$
 and $j_B^{\mu} = n_B u^{\mu}$

- Boost invariant perfect fluid hydrodynamics with transverse expansion
- Full kinetic and chemical equilibrium
- Equation of State: Bag model EoS connecting Hadron gas with all hadronic states with m < 2 GeV and QGP with $N_f = 3$ ($T_c = 165$ MeV)
- Cooper-Frye decoupling
- All 2- and 3-body decays of unstable hadronic states

Results for the most central collisions

(see talk by K. Eskola)

K.J. Eskola, H. Honkanen, H. Niemi, P.V. Ruuskanen and S.S. Räsänen, Phys. Rev. C **72** (2005) 044904 [arXiv:hep-ph/0506049].

Extension to non-central collisions

- We consider two limits for centrality dependence of initial energy density:
 eBC & eWN from Kolb et. al. Nucl.Phys.A696:197-215,2001
- In eBC(eWN) energy density is proportional to density of binary collisions (wounded nucleons) calculated from optical Glauber model

Harri Niemi: Elliptic flow from pQCD + saturation + hydro model

Pion spectra for different centralities at RHIC

- Both models are in good agreement with low-p_T pion spectra for central and midperipheral collisions
- **eBC:** T_{DEC} =150 MeV • **eWN:** T_{DEC} =140 MeV
- Model fails at high-p_T and for peripheral collisions
- Protons would require more detailed treatment of the hadron gas dynamics

PHENIX data:

S.S. Adler, et al, Phys.Rev. C69 (2004) 034909

Minimum bias v₂ for pions at RHIC & LHC

- Both eBC and eWN models give a good description of low-p_T RHIC data
- We use same freeze-out temperatures as at RHIC
 eBC: T_{DEC}=150 MeV
 eWN: T_{DEC}=140 MeV
- For eWN v₂ at the LHC is very close to RHIC data
- Model eBC gives clearly larger v₂ in the whole p_T range
- LHC $v_2(p_T) \ge RHIC v_2(p_T)$ for pions
- Hydrodynamic region is larger at LHC: $v_2(p_T)$ reaches 0.2 at $p_T \approx 2.5$ GeV

Minimum bias v₂ for protons at RHIC & LHC

- The model overpredicts the RHIC data at low p_T (Need more detailed description of hadron gas dynamics e.g. hadron cascade)
- There is still clear distinction in behaviour of v₂ between pions and protons from RHIC to LHC
- At fixed p_T proton v₂ is less at the LHC than at RHIC, when comparing between model calculations.

• LHC $v_2(p_T) \le RHIC v_2(p_T)$ for protons

Conclusions

- We have predicted minimum bias elliptic flow at the LHC for pions, using EKRT model initial state for central collisions as a starting point
- Centrality dependence is modeled using two Glauber model limits (eBC and eWN)
- The model is tested against RHIC data
 - LHC $v_2(p_T) \ge RHIC v_2(p_T)$ for pions
 - Hydrodynamic region is larger at LHC: $v_2(p_T)$ reaches 0.2 at $p_T \approx 2.5$ GeV
 - LHC $v_2(p_T) \le RHIC v_2(p_T)$ for protons