Hadrochemistry of jet quenching at the LHC

Sebastian Sapeta

CERN, Geneva, Switzerland and Jagellonian University, Cracow, Poland

in collaboration with Urs Achim Wiedemann

Heavy Ion Collisions at the LHC, Focus Week, CERN, May 29th - June 2nd 2007

- lacksquare a lot is known about jets in e^+e^- and $pp/par{p}$
- we have successful models for spectra at intermediate momenta

- **a** lot is known about jets in e^+e^- and $pp/p\bar{p}$
- we have successful models for spectra at intermediate momenta

Highly energetic jet superimposed on the top of the heavy ion background

- \Rightarrow central collisions
- \Rightarrow we choose $\theta_c = 0.28$
- ⇒ underlying event particles which end up in the cone added

- **•** a lot is known about jets in e^+e^- and $pp/p\bar{p}$
- we have successful models for spectra at intermediate momenta

Highly energetic jet superimposed on the top of the heavy ion background

Possible mechanisms medium affects hadrochemistry:

- color transfer effects
- flavor and baryon number exchange between medium and projectile
- recombination of partons from jet and medium
- recoil effects medium components kicked into the jet cone
- momentum exchange between medium and projectile

Possible mechanisms medium affects hadrochemistry:

- color transfer effects
- flavor and baryon number exchange between medium and projectile
- recombination of partons from jet and medium
- recoil effects medium components kicked into the jet cone
- momentum exchange between medium and projectile

Possible mechanisms medium affects hadrochemistry:

- color transfer effects
- flavor and baryon number exchange between medium and projectile
- recombination of partons from jet and medium
- recoil effects medium components kicked into the jet cone
- momentum exchange between medium and projectile

This is likely to underestimate the medium-modifications of jet hadrochemistry. However, it may serve as a baseline on top of which other signatures of hadrochemical modifications can be established.

- ullet resummation in leading $\log Q^2$ and $\log(1/x)$ + angular ordering
- \bullet non-leading single logs of 1/x taken into account
- energy-momentum conservation

- resummation in leading $\log Q^2$ and $\log(1/x)$ + angular ordering
- \bullet non-leading single logs of 1/x taken into account
- energy-momentum conservation

$$D^{\lim}(\xi = \ln \frac{1}{x}, E_{\text{jet}}, \theta_c, \Lambda)$$

- resummation in leading $\log Q^2$ and $\log(1/x)$ + angular ordering
- \bullet non-leading single logs of 1/x taken into account
- energy-momentum conservation

$$\frac{dN^h}{d\xi} = K^h(M_h) \gamma_h D^{\lim}(\xi = \ln \frac{1}{x}, E_{\text{jet}}, \theta_c, \Lambda)$$

- ullet resummation in leading $\log Q^2$ and $\log(1/x)$ + angular ordering
- ightharpoonup non-leading single logs of 1/x taken into account
- energy-momentum conservation

$$\frac{dN^h}{d\xi} = K^h(M_h) \gamma_h D^{\lim}(\xi = \ln \frac{1}{x}, E_{\text{jet}}, \theta_c, \Lambda)$$

THE MODEL OF MEDIUM MODIFICATION

[N.Borghini, U.A.Wiedemann; 2005]

medium enhances parton splitting by factor, e.g.

$$P_{qq}(z) = C_F \left\{ \frac{2(1+f_{\text{med}})}{(1-z)_+} - (1+z) \right\}$$

THE MODEL OF MEDIUM MODIFICATION

[N.Borghini, U.A.Wiedemann; 2005]

medium enhances parton splitting by factor, e.g.

$$P_{qq}(z) = C_F \left\{ \frac{2(1+f_{\text{med}})}{(1-z)_+} - (1+z) \right\}$$

jet multiplicity distribution softens

THE MODEL OF MEDIUM MODIFICATION

[N.Borghini, U.A.Wiedemann; 2005]

medium enhances parton splitting by factor, e.g.

$$P_{qq}(z) = C_F \left\{ \frac{2(1+f_{\text{med}})}{(1-z)_+} - (1+z) \right\}$$

- jet multiplicity distribution softens
- enough to account for the observed suppression of single inclusive spectra

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

Two competing mechanisms

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

Two competing mechanisms

recombination of constituent quarks

 $\upsilon_{\perp}=0.55$ (RHIC), $\upsilon_{\perp}\approx0.7$ (LHC), T = 175 MeV

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

Two competing mechanisms

- precombination of constituent quarks $v_{\perp}=0.55$ (RHIC), $v_{\perp}\approx0.7$ (LHC), $v_{\perp}\approx175$ MeV
- fragmentation of perturbative partons KKP parametrization, suppression of particles with high p taken into account

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

Two competing mechanisms

- precombination of constituent quarks $v_{\perp}=0.55$ (RHIC), $v_{\perp}\approx0.7$ (LHC), $v_{\perp}\approx175$ MeV
- fragmentation of perturbative partons KKP parametrization, suppression of particles with high p taken into account

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

Two competing mechanisms

- recombination of constituent quarks $v_{\perp}=0.55$ (RHIC), $v_{\perp}\approx 0.7$ (LHC), T = 175 MeV
- fragmentation of perturbative partons KKP parametrization, suppression of particles with high p taken into account

LHC spectra expected to be dominated by recombination component up to the momenta higher by 2 GeV w.r.t. RHIC spectra

RESULTS

HADRON SPECTRA

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

- characteristically different spectra for the soft background and jets
- the larger jet energy the stronger the effect
- proton spectra particularly well separated

HADRON SPECTRA

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

- medium affects hadrochemistry within the jet cone
- medium modification varies with hadron species and jet energy
- modified spectra well separated from the background

HADRON RATIOS

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

Pure jets

- significant difference of hadron ratios for medium modified and unmodified jets at high momenta
- ratios in the background substantially different from ratios in jets

HADRON RATIOS

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

Jets + background

- difference of hadron ratios persists
- ullet mild dependence on energy for $E_{
 m jet}$ for certain p-range
- at high momenta hadrons from background dominate over hadrons from modified jet

MODIFICATION FACTORS

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

Jets + background

$$J_{\mathrm{AA}} \equiv \frac{\left. \frac{dN}{dp} \right|_{\mathrm{med}}}{\left. \frac{dN}{dp} \right|_{\mathrm{vac}}}$$

- critical momentum varies significantly both with hadron species and with energy
- protons the least sensitive to the background

SUMMARY

- Jet quenching can leave signatures in the hadrochemical composition of jets
- Modifications of spectra and ratios vary with hadron species and jet energies
- Because of characteristically different hadrochemistry of jets and the soft background this signature persists even if one does not separate the two
- Measurement of the underlying event in Pb-Pb collisions at LHC will reduce uncertainties of our predictions