Evolution of elliptic flow and HBT radii from RHIC to LHC – Predictions from ideal fluid dynamics* #### Ulrich Heinz Department of Physics The Ohio State University 191 West Woodruff Avenue Columbus, OH 43210 #### presented at Heavy Ion Collisions at the LHC – Last Call for Predictions CERN, May 29 - June 2, 2007 #### Collaborators: Rupa Chatterjee, Evan Frodermann, Charles Gale, Tetsufumi Hirano, Greg Kestin, Peter Kolb, Huichao Song, Dinesh Srivastava *Supported by the U.S. Department of Energy (DOE) ## Part I: ## Elliptic flow of pions and photons ### RHIC: perfect QGP fluidity vs. dissipative hadron dynamics Glauber model initl. conds. + 3D Ideal QGP Hydro + Hadron Cascade explain all v_2 measurements in Au+Au at RHIC - Not enough elliptic flow from perfect QGP fluid some hadronic contribution to v_2 still required at RHIC - ullet Treating the hadronic stage as ideal fluid overpredicts v_2 in peripheral collisions and at forward rapidities - Dissipation in hadronic cascade brings theory in line with data (except for small b excess in data due to event-by-event geometry fluctuations (Miller & Snellings, PHOBOS)) ## LHC: dissipative hadronic effects die out at y=0 ### Last Call for Predictions – but. not my last answer! Working hypotheses for my two talks today: - QGP remains perfectly fluid at LHC (α_s varies only logarithmically with T) [but see my talk on viscous hydrodynamics next week!] - Glauber model initial conditions (validity needs to be checked hard!) - similar kinetic freeze-out energy densities at RHIC and LHC - \bullet rapid initial thermalization at $\tau_0=1/T_0$ ($T_0=$ peak temperature in Au+Au/Pb+Pb at $b{=}0)$ no transverse flow at τ_0 - ignore hadronic dissipation (terrible at AGS, excellent (?) at LHC) ## Charged multiplicity vs. \sqrt{s} : (see Wit Busza's talk yesterday) Hydrodynamics cannot predict \sqrt{s} -dependence of final multiplicity (\leftrightarrow initial entropy density) \implies predict all observables as functions of $\left.\frac{dN_{\rm ch}}{dy}\right|_{y=0}\longleftrightarrow s_0$ ## **Evolution of pion spectra** ## **Evolution of pion spectra** Monotonic increase of radial flow! ## **Evolution of pion elliptic flow** ## **Evolution of pion elliptic flow** v_2 at fixed p_T does not increase monotonically! (It decreases from RHIC to LHC, due to increased radial flow which flattens pion spectrum.) ## Evolution of v_2 at fixed p_T Once fully developed, v_2 at fixed p_T decreases with increasing \sqrt{s} , due to increased radial flow which flattens the pion spectrum! ## Evolution of p_T -integrated pion elliptic flow p_T -integrated pion v_2 shows similar excitation function as charged hadron v_2 . (Increases from RHIC to LHC, due to increased radial flow which flattens the pion spectrum.) # Early evolution of elliptic flow via photons and dileptons ## Photon and dilepton elliptic flow at RHIC: High- p_T photons and high-mass dileptons probe early fireball evolution: R. Chatterjee, E. Frodermann, UH, D.K. Srivastava, PRL 96 (2006) 202302 #### Photon elliptic flow: R. Chatterjee, D.K. Srivastava, UH, C. Gale, nucl-th/0702039 (PRC, in press) #### Dilepton elliptic flow: Used $s_0=351\,\mathrm{fm}^{-3}$ at $\tau_0=0.2\,\mathrm{fm}/c$. ## Photon spectra and elliptic flow at LHC: Rupa Chatterjee Used $$s_0 = 2438 \, \mathrm{fm}^{-3}$$ at $\tau_0 = 0.1 \, \mathrm{fm}/c$ $\Longrightarrow \frac{dN_{\mathrm{ch}}}{dy} \bigg|_{y=0} =$ - Photon spectra flatter at LHC, due to more radial flow - ullet QM dominance shifts to lower p_T - ullet Photon elliptic flow much larger at LHC, due to twice larger v_2 of QM radiation at high p_T and . . . ## Photon spectra and elliptic flow at LHC: Rupa Chatterjee Used $$s_0=2438\,\mathrm{fm^{-3}}$$ at $\tau_0=0.1\,\mathrm{fm/}c$ $\Longrightarrow \frac{dN_\mathrm{ch}}{dy}\bigg|_{y=0}=2350$ - Photon spectra flatter at LHC, due to more radial flow - ullet QM dominance shifts to lower p_T - Photon elliptic flow much larger at LHC, due to twice larger v_2 of QM radiation at high p_T and increased v_2 of hadronic photons at low p_T ## Part II: Pion HBT radii ## Hydrodynamic freeze-out surface at the LHC Rupa Chatterjee Pb+Pb at $$b=7\,\mathrm{fm}$$; $s_0=1735\,\mathrm{fm}^{-3}$ at $\tau_0=0.1\,\mathrm{fm}/c$; $\left.\frac{dN_\mathrm{ch}}{dy}\right|_{y=0,b=0}=2035$. Constant energy density contours Evolution out-of-plane → in-plane; explore with HBT microscope ## Caveat: Ideal fluid dynamics fails to reproduce transverse HBT radii (R_s, R_o) at RHIC (magnitude, ratio, and K_T -dependence). No reason for trusting hydro predictions any better at LHC. However, ideal hydro gets normalized azimuthal oscillation amplitudes of R_s , R_o right. Use ideal hydrodynamics to develop feeling for expected trends, but not for quantitative predictions (yet). Numerical problems with realistic EoS \Longrightarrow so far only results for ideal gas EoS (p=e/3). With this EoS $e_{\rm dec}=0.075\,{\rm GeV/fm^3} \leftrightarrow T_{\rm dec}=80\,{\rm MeV}$ while $T_{\rm dec}=130\,{\rm MeV} \leftrightarrow e_{\rm dec}=0.517\,{\rm GeV/fm^3}$. ## HBT radii for b=0: magnitude, K_T -dependence Evan Frodermann π⁺ HBT radii, Au+Au b=0 fm, e_{dec}=0.517 GeV/fm³, T_{dec}=130 MeV ## HBT radii for b=0: magnitude, K_T -dependence $T_{\rm dec}=80~{ m MeV}$ π⁺ HBT radii, Au+Au b=0 fm, e_{dec}=0.075 GeV/fm³ ## HBT radii for b=0: \sqrt{s} -dependence Evan Frodermann ## HBT radii for b=0: \sqrt{s} -dependence $T_{\rm dec} = 80~{ m MeV}$ ## HBT oscillations for Au+Au at b=7 fm: RHIC Evan Frodermann ### HBT oscillations for Au+Au at b=7 fm: LHC Evan Frodermann ## Normalized HBT oscillation amplitudes (Lisa & Retiere 2003) π^+ HBT radii, Au+Au, b=7 fm $e_{dec} = 0.075 \text{ GeV/fm}^3$ Eccentricity at pion freeze-out decreases from RHIC to LHC to almost zero! ## Summary of hydrodynamic predictions - Charged hadron v_2 increases by at most 20% from RHIC to LHC (mostly due to elimination of hadronic dissipation effects, very little increase in ideal fluid v_2) - ullet Inverse pion slope increases by $\sim 20\%$ from RHIC to LHC due to larger radial flow. - Pion v_2 at fixed p_T decreases from RHIC to LHC (by $\simeq 50\%$ at $p_T=200~{\rm MeV}/c$, by a few % at $p_T=1~{\rm GeV}/c$.) - Thermal photon v_2 from QM increases by up to a factor 2 between RHIC and LHC, leading to significant (up to 50%, depending on p_T) increase of total photon elliptic flow. - HBT radii change very little between RHIC and LHC (increases of 25-30% for R_l , 10-15% for R_o , < 10% for R_s at K_T =0, less at higher K_T). - Azimuthal HBT oscillations decrease dramatically at low K_T , since freeze-out source becomes almost round in Pb+Pb at LHC.