PARTICLE RATIOS AT HIGH- p_T AT LHC ENERGIES

Gergely Gábor Barnaföldi – MTA KFKI RMKI

in collaboration with:

Péter Lévai – MTA KFKI RMKI;

Brian A. Cole – Columbia University;

George Fai – CNR, Kent State University;

Gábor Papp – ELTE;

Heavy ion Collisions at the LHC – Last Call for Predictions CERN TH Dept. – Geneva $14^{\rm th}$ May – $8^{\rm th}$ June 2007

OUTLINE

'OLD': Predictions for pp and dA (since QM'06)

- Relevance of intrinsic- k_T in pp at LHC
- Spectra in pp based on KKP and AKK FFs
- Prediction based on KKP for pp and dA at LHC

'NEW': Ratios in pp, dA and AA beyond RHIC

- KKP ratios vs. AKK ratios
- Intrinsic- k_T : modifications for π^{\pm}/K^{\pm}
- Jet-Quenching: differences in suppression pattern of π^{\pm}/K^{\pm}

MOTIVATION

Time evolution of high- p_T

- Linear extrapolation form 2004: Meaning of "high- p_T " has changed for last 10 years.

HMPID in the ALICE

- ALICE has a unique capability for high- p_T PID: π/K and K/pup to 3 and 5 GeV/c respectively.

1. June 2007 – CERN-LHC '07 G.G. Barnaföldi

The pQCD Improved Parton Model for pp Collisions

$$E_{\pi} \frac{\mathrm{d}\sigma_{\pi}^{pA}}{\mathrm{d}^{3}p_{\pi}} \sim f_{a/p}(x_{a}, Q^{2}; k_{T}) \otimes f_{b/A}(x_{b}, Q^{2}; k_{T}, b) \otimes \frac{\mathrm{d}\sigma^{ab \to cd}}{\mathrm{d}\hat{t}} \otimes \frac{D_{\pi/c}(z_{c}, \widehat{Q}^{2})}{\pi z_{c}^{2}}.$$

 $f_{b/A}(x_a, Q^2; k_T, b)$: Parton Dist. Function (PDF), at scale Q^2

 $D_{\pi/c}(z_c,\widehat{Q}^2)$: Fragmentation Function for π (FF), at scale \widehat{Q}^2

Longitudinal 1-Dimensional PDFs and FFs

(a) Parton Distribution Functions (PDF):

(LO case) GRV – Glück, Reya, Vogt

HKM and HKN – Hirai et al.

(NLO case) MRST-(c-g) – A.D. Martin et al.

CTEQ5M – H. L. Lai et al.

HKM and HKN – Hirai et al.

(b) Fragmentation Functions (FF):

BKK – Binnewies, Kniehl, Kramer (v1, v2)

KKP – Kniehl, Kramer, Pötter.

AKK – Albino, Kniehl, Kramer, Pötter.

More: Kretzer, FGS, etc . . .

1. June 2007 – CERN-LHC '07 G.G. Barnaföldi

(Nuclear) Effects in Our Model at:

CERN SPS ENERGIES

Old and new data from Fermilab, WA98, NA49 . . .

(Nuclear) Effects in Our Model at:

RHIC ENERGIES

... high precision data by RHIC experiments ...

Sects in Our Model at:

"Shadowing"

Systems: pA,AA

Small-x, mostly low-p_T but EMC, anti-shadowing at high-p_T

Intrinsic k_T
Systems: pp,pA,AA
Low- or
intermediate-p_T

LHC ENERGIES

Jet-Quenching

Systems:(pA),AA

Real high-p_T

... and predictions for LHC energies!

Relevance of intrinsic- k_T in pp at LHC

Experimental measurements on $\langle p_T \rangle_{pair}$ dependence on \sqrt{s}

L. Apanasevich et al. E706

Effect of $\langle k_T^2 \rangle$ can be seen in high- p_T hadron spectra at LHC

π production in pp collisions at different energies

Can we see this modification in low-, and intermediate- p_T at LHC?

mon-exponential spectra

See: Phys. Rev C65 034903 (2002), and QM '07 Proc. hep-ph/0703059

π^0 production in pp collisions

... and NOW for other hadron spectra in pp ...

$K, K_s^0, \Lambda \text{ and } p \text{ production in } pp \text{ collisions}$

... Data/Theory coming soon ...

1. June 2007 – CERN-LHC '07 G.G. Barnaföldi

R_{dPb} at in dPb Collision at different energies beyond RHIC

Two main initial state effects:

Suppression can be strong at high- p_T at the LHC energies. Cronin peak is slightly moving towards higher- p_T values.

s^{1/2} (GeV)

Opacity Prediction for PbPb collisions at LHC

$$L \propto A^{1/3} \propto N_{part}^{1/3}$$

$$\varepsilon = \Delta E/E \propto L^2 \propto N_{part}^{2/3}$$

 L/λ will NOT disappear in very peripheral collisions \Longrightarrow

WHAT DOES THIS MEAN?

More Suppression at LHC?

C.M. Energy dependence of GLV jet energy loss

$$\Delta E_{GLV} \approx \frac{C_R \alpha_s}{N(E)} \frac{L^2 \mu^2}{\lambda_g} \log \frac{E}{\mu} = \frac{C_R \alpha_s}{N(E)} \frac{1}{A_\perp} \frac{dN}{dy} \langle L \rangle \log \frac{E}{\langle \mu \rangle}$$

• AuAu at RHIC $\frac{1}{A_{\perp}}\frac{dN}{dy} \approx \frac{680}{\pi R_{AuAu}^2} = 5.12^{\frac{6}{5}}$

- Without suppression $\frac{dN}{dy} \sim \ln \sqrt{s}$
- At LHC this $\frac{dN}{dy}$ will be $\sim 1500 2000$

'NEW': Comparing KKP and AKK FFs

in pp, dA and AA collisions via ratios

High p_T Hadron Ratios in pp at RHIC

- LO and NLO calculations agree to each other
- AKK and KKP result differ and not only π/p

High p_T Ratios in dAu and AuAu with KKP at RHIC

Applied KKP Fragmentation Function

• Flavor dependence: jet-quenching is stronger for the g

Ratio calculations in pp up to RHIC energies

P. Levai, G. Fai, M. Gyulassy: nucl-th/0012017

Ratio calculations in pp beyond RHIC energies

Calculations with KKP – it seem not all good...

Ratio calculations in pp beyond RHIC energies

Predictions with AKK ...

SUMMARY without CONCLUSIONS

Hadron Spectra and R_{dA}

- \Longrightarrow Relevance of intrinsic- k_T at low- and intermediate- p_T
- \Longrightarrow Strong shadowing effect up to intermediate- p_T s
- $\implies dPb$ may 'need' cold-quenching beyond RHIC?

Effects on Particle Ratios in pp, dA and AA

- ⇒ Ratios: some cases KKP and AKK disagree
- ⇒ Differences in jet quenching: flavor dependence?
- \implies Different $\langle k_T^2 \rangle$ for different hadrons?

Mearuring ratios are important ...

Told you to stop referring to the size of her combined ratio...

... but descriptions might be dangerous!

...and if the ALICE HMPID not enough ... Bari, INFN, RMKI, UNAM

High Momentum Particle IDentification detector

– HMPID is for extend the range for the ID of π/K and K/p, on a track-by-track basis, up to 3 and 5 GeV/c respectively.

VERY HMPID (VHMPID)

- Higher momentum particle ID and track-by-track is available up to 15 GeV/c. (G. Volpe)

Effect of intrinsic- k_T on the ratios in pp at RHIC

Left: NO intrinsic- k_T

Right: with intrinsic- k_T

- Multiscattering at parton level: only for the q contribution
- Parton level multiscattering vs. different intrinsic- k_T ?