# Exciting the QGP with a relativistic jet Cristina Manuel Instituto de Ciencias del Espacio (Barcelona, IEEC/CSIC)

#### in collaboration with Massimo Mannarelli

(based on arXiv:0705.1047, see also C.M. and S. Mrówczyński PRD74, 105003 (2006))

CERN, May 2007

#### Motivation

Mach cone structures in RHIC ?? Phenix; Casalderrey-Solana, Shuryak, Teaney, '05

 $\dots$  but (colorless) hydrodynamical simulations, with realistic values of all variables, suggest that the effect is too weak to explain data Chaudhuri, Heinz '06

New colored hydrodynamical effects: they might **enhance** the signals; they also describe **jet quenching** (new mechanism: not collisional, not radiative, but based on a collective effect)

## Charged beam of particles crossing an E.M. Plasma

- For certain values of the beam parameters ⇒
  there are unstable gauge field modes (growing E, B)
- Specific example of the so-called two-stream instabilities widely studied in different physical contexts (inertial confinement fusion, astrophysics, cosmology, ...)
- Different methodologies to address the problem (kinetic theory, hydrodynamics, etc).
   Also experimental data ....

## Neutral beam of fast particles traversing the QGP

Same phenomena that in an electromagnetic plasma should occur!! Paylenko '92

We use a chromohydrodynamical approach to adress the problem because it does not rely on  $g\ll 1$  and on the quasi-particle picture (but the kinetic theory approach is on the way ....)

also assuming the conformal limit  $c_s^2 = \frac{1}{3}$  (no generated scales, as suggested by lattice)

## Chromohydrodynamical approach

Hydrodynamics (  $\sim$  conservation laws) requires the system to be in a local equilibrium state

Even if this is color neutral, hydrodynamical fluctuations can be colored (and may grow in some cases rather than being damped)

$$n = \bar{n} + \delta n$$
  $u^{\mu} = \bar{u}^{\mu} + \delta u^{\mu}$   
 $\epsilon = \bar{\epsilon} + \delta \epsilon$   $p = \bar{p} + \delta p$ 

## Hydro approach to the QGP

#### Linearized fluid equations

$$(D_{\mu}\delta n)\,\bar{u}^{\mu}+\bar{n}\,D_{\mu}\delta u^{\mu}=0$$

$$ar{u}^{\mu}D_{\mu}\delta\epsilon+(ar{\epsilon}+ar{p})D_{\mu}\delta u^{\mu}=0$$

$$(\bar{\epsilon} + \bar{p})\bar{u}_{\mu}D^{\mu}\underline{\delta u^{\nu}} - (D^{\nu} - \bar{u}^{\nu}\bar{u}_{\mu}D^{\mu})\underline{\delta p} - g\bar{n}\bar{u}_{\mu}F^{\mu\nu} = 0$$

which have to be solved in order to find an induced colored current

$$j^{\mu} = \bar{j}^{\mu} + \delta j^{\mu} \qquad \bar{j}^{\mu} = 0$$

$$\delta j^{\mu} = -\frac{g}{2} \left( \bar{n} \, \delta u^{\mu} + \bar{u}^{\mu} \, \delta n \right) \qquad \delta j^{\mu} = \Pi^{\mu\nu} A_{\mu} + \cdots$$

## $Hydro\ approach\ to\ the\ jet+QGP$

- For the beam, with velocity v: pressure gradients are entirely neglected evolution only due to the mean fields ("cold beam approximation", valid for  $\gamma\gg 1$ )
- For the plasma  $p(x) = c_s^2 \epsilon(x)$

We have found that there are always instabilities iff  $v>c_s$ . Growing rates for a mode of momenta k depend on v and on the plasma frequency

$$\omega_t^2 = \omega_p^2 + \omega_{
m jet}^2$$
 and on  $b = \frac{\omega_{
m jet}^2}{\omega_t^2}$ 

also on  $\theta$  the angle between **k** and **v**. Unstable modes in IR sector, up to  $k_{\rm max} \gtrsim \omega_t$ 

## Growing rates for v=0.8



## Growing rates for v=0.9



## Growing rates for v=1



### **Conclusions**

- The jet transfers energy and momentum to the gauge fields (collective effect). The gauge fields should decay finally into soft hadrons.
- The effect occurs whenever  $v > c_s$ , that is, when the beam also produces a shock wave and a Mach cone structure.
- Energy loss??
   Sorry, not yet, but it is on the way ....
- In the LHC one may expect to create more energetic high p<sub>T</sub> particles. Values of the beam parameter may differ with respect to RHIC ⇒ shorter time for the appearance of instabilities.