Perturbative jet energy loss mechanisms

Learning from RHIC, extrapolating to LHC

Simon Wicks Miklos Gyulassy

Collisional unimportant at LHC?

Note: dNg/dy = 2900 will come later

Collisional unimportant at LHC?

Note: dNg/dy = 2900 will come later

Why look at collisional processes?

- 1) Know what are the energy loss mechanisms are. Different energy loss mechanisms scale differently with density and jet energy. Consistency between RHIC and LHC?
- 2) Collisions are what induce (cause the medium modification to) the radiative energy loss.

The model

Hybrid radiative + collisional model

- Incoherent addition of (D)GLV radiative with collisional energy loss model
- Collisional: t-channel exchange
- HTL modified gluon propgator
- Scattering off massless medium
- Neglect difference between Q-q and Q-g scattering (except Casimir)
- Neglect finite time effects

Collisional energy loss formalism

$$\frac{dN}{d\omega} = \frac{1}{E^2} \frac{1}{v} \frac{1}{(2\pi)^4} \int_{|p-\sqrt{(\omega+E)^2 - M^2}|}^{p+\sqrt{(\omega+E)^2 - M^2}} dq \int_{\frac{1}{2}(q+\omega)}^{\infty} dk \int_0^{2\pi} d\phi \, (...)$$

$$\delta(\omega + E - E') = \frac{E'}{pq} \delta \left(\cos\theta_{pq} - \left(\frac{\omega}{vq} + \frac{\omega^2 - q^2}{2pq}\right)\right)$$

$$\delta(\omega - E_k + E'_k) = \frac{E'_k}{kq} \delta \left(\cos\theta_{kq} - \left(\frac{\omega}{v_k q} - \frac{\omega^2 - q^2}{2kq}\right)\right)$$

$$D_{\mu\nu}(q) = Q_{\mu\nu}(q)\Delta_L(q) + P_{\mu\nu}\Delta_T(q) \qquad Q_{00} = 1 \quad , \quad \Delta_L(Q) = \frac{1}{q^2 - \Pi_l}$$

$$P_{ij} = -(g_{ij} + \hat{q}_i\hat{q}_j) \quad , \quad \Delta_T(Q) = \frac{1}{\omega^2 - q^2 - \Pi_l}$$

$$\langle |M|^2 \rangle = 16g^4 k_{CF} E^2 E_k^2 \left[C_{LL} |\Delta_L(q)|^2 + 2C_{LT} Re(\Delta_L(q) \Delta_T^*(q)) + C_{TT} |\Delta_T(q)|^2 \right]$$

$$egin{array}{lll} C_{LL} &=& \left((1 + rac{\omega}{2E})^2 - rac{q^2}{4E^2}
ight) \left((1 - rac{\omega}{2E_k})^2 - rac{q^2}{4E_k^2}
ight) \ C_{LT} &=& 0 \ C_{TT} &=& rac{1}{2} \left(v^2 - rac{\omega^2}{q^2} \left(1 + rac{\omega}{2E}
ight)^2 + rac{1}{E} \left(\omega + rac{q^2}{4E}
ight)
ight) \left(v_k^2 - rac{\omega^2}{q^2} \left(1 - rac{\omega}{2E_k}
ight)^2 - rac{1}{E_k} \left(\omega - rac{q^2}{4E_k}
ight)
ight) \end{array}$$

Collisional energy loss distribution

(before multiple collision convolution)

Multiple collisions

- The rare, hard collisions contribute to <ΔE>
- ie NOT well described by continuum Langevin / Fokker-Planck process.

What about q_{perp} distributions?

Transverse diffusion process?

Multiple collisions

$$P(\epsilon) = \sum \frac{\chi^n e^{-\chi}}{n!} P_n(\epsilon)$$

- Multiple independent collisions
 Poisson convolution
- Use phenomenological magnetic screening mass

$$\chi = \langle n(L) \rangle = \int_{-\infty}^{E} d\omega \, \frac{dN}{d\omega} \frac{L}{v}$$

$$P_1(\epsilon) = \frac{1}{\chi} \frac{dN}{d\omega}$$

$$P_n(\epsilon) = \int dx \, P_{n-1}(x) P_1(\epsilon - x)$$

The medium

- Bulk: distributed by participant density
- Jets: distributed by binary density
- Bjorken expansion: implement by `L/2' approximation.

Results - RHIC

Pions

Predicting LHC Pions

Predicting LHC Pions

Predicting LHC Pions

Predicting - LHC Heavy quarks

A closer look ...

... at collisional energy loss and the uncertainties.

The uncertainties

1st June 2007

Simon Wicks, LHC Last Call

How to quantify?

Look at two schemes that are equivalent 'at leading order'

Both agree in limit $\omega,q << T$, μ and in limit $\omega,q -> \infty$ (or $\mu -> 0$)

- 1) Simple extrapolation of HTL to large momentum transfer.
- Prescription found in AMY only modify infrared divergent part of amplitude.

Result

Medium effects can persist out to high momentum exchange (as close to light cone)

Equivalent at leading order

$$\frac{\langle \Delta E \rangle_{HTL-AMY}}{\langle \Delta E \rangle_{HTL}} =$$

$$g = 2$$
, $pt = 10GeV$: 1.6
 $g = 1$, $pt = 10GeV$: 1.3

$$g = 0.1$$
, $pt = 1GeV$: 1.0

Conclusions

- Radiative energy loss is main contribution at LHC
 - BUT collisional energy loss affects fitting to RHIC, hence extrapolation to LHC
- Diffusion (continuum) process not applicable to length scales of interest
- Need information in region $\omega > T$, μ to make predictions
 - hence, 'leading order' HTL gives ~ 50% uncertainty
 - what is uncertainty in coll / rad ratio?
- The medium can affect high momentum exchange processes
 - if close to the light cone

Phase space

$$\frac{1}{2p^0} \int \frac{d^3k}{(2\pi)^3 2k^0} \frac{d^3k'}{(2\pi)^3 2k'^0} \frac{d^3p'}{(2\pi)^3 2p'^0} (2\pi)^4 \delta^4(P + K - P' - K')$$

Similar treatment to:

Moore & Teaney Phys.Rev.C71:064904,2005 Djordjevic Phys.Rev.C74:064907,2006 Arnold, Moore, Yaffe JHEP 0305:051,2003

$$\delta(\omega + E - E') = \frac{E'}{pq} \delta\left(\cos\theta_{pq} - \left(\frac{\omega}{vq} + \frac{\omega^2 - q^2}{2pq}\right)\right)$$

$$\delta(\omega - E_k + E'_k) = \frac{E'_k}{kq} \delta\left(\cos\theta_{kq} - \left(\frac{\omega}{v_k q} - \frac{\omega^2 - q^2}{2kq}\right)\right)$$

Massive jet, massless medium

$$\frac{dN}{d\omega} = \frac{1}{E^2} \frac{1}{v} \frac{1}{(2\pi)^4} \int_{|p-\sqrt{(\omega+E)^2-M^2}|}^{p+\sqrt{(\omega+E)^2-M^2}} dq \int_{\frac{1}{2}(q+\omega)}^{\infty} dk \int_0^{2\pi} d\phi \, (\dots)$$

The Matrix Element

$$\begin{split} \frac{1}{2p^0} \int \frac{d^3k}{(2\pi)^3 2k^0} \frac{d^3k'}{(2\pi)^3 2k^0} \frac{d^3p'}{(2\pi)^3 2p^0} (2\pi)^4 \delta^4(P + K - P' - K') \\ \delta(\omega + E - E') &= \frac{E'}{pq} \delta \left(\cos \theta_{pq} - \left(\frac{\omega}{vq} + \frac{\omega^2 - q^2}{2pq} \right) \right) \cdot \frac{1}{v} \frac{1}{(2\pi)^4} \int_{|p-\sqrt{(\omega + E)^2 - M^2}}^{p+\sqrt{(\omega + E)^2 - M^2}} dq \int_{\frac{1}{2}(q + \omega)}^{\infty} dk \int_{0}^{2\pi} d\phi \left(\dots \right) \\ \delta(\omega - E_k + E'_k) &= \frac{E'_k}{kq} \delta \left(\cos \theta_{kq} - \left(\frac{\omega}{v_k q} - \frac{\omega^2 - q^2}{2kq} \right) \right) \\ \langle |M|^2 \rangle &= 4g^4 k_{CF} \left(p^{\mu} p^{\mu'} + p^{\mu'} p'^{\mu} + (M^2 - p.p') g^{\mu\mu'} \right) D_{\mu\nu}(q) D^*_{\mu'\nu'}(q) \left(k^{\nu} k^{n\nu'} + k^{\nu'} k^{n\nu} + (m^2 - k.k') g^{\nu\nu'} \right) \\ D_{\mu\nu} \left(q \right) &= Q_{\mu\nu} \left(q \right) \Delta_L \left(q \right) + P_{\mu\nu} \Delta_T \left(q \right) \\ Q_{00} &= 1 \quad , \quad \Delta_L(Q) = \frac{1}{q^2 - \Pi_l} \\ P_{ij} &= -(g_{ij} + \hat{q}_i \hat{q}_j) \quad , \quad \Delta_T(Q) = \frac{1}{\omega^2 - q^2 - \Pi_l} \\ \langle |M|^2 \rangle &= 16g^4 k_{CF} E^2 E_k^2 \left[C_{LL} |\Delta_L(q)|^2 + 2C_{LT} Re(\Delta_L(q) \Delta^*_T(q)) + C_{TT} |\Delta_T(q)|^2 \right] \\ C_{LL} &= \left((1 + \frac{\omega}{2E})^2 - \frac{q^2}{4E^2} \right) \left((1 - \frac{\omega}{2E_k})^2 - \frac{q^2}{4E_k^2} \right) \\ C_{LT} &= 0 \\ C_{TT} &= \frac{1}{2} \left(v^2 - \frac{\omega^2}{q^2} \left(1 + \frac{\omega}{2E} \right)^2 + \frac{1}{E} \left(\omega + \frac{q^2}{4E} \right) \right) \left(v_k^2 - \frac{\omega^2}{q^2} \left(1 - \frac{\omega}{2E_k} \right)^2 - \frac{1}{E_k} \left(\omega - \frac{q^2}{4E_k} \right) \right) \end{split}$$

The Matrix Element (cont.)

$$\Delta_L(q) = \left[q^2 + \mu^2 \left(1 + \frac{\omega}{2q} \ln(\frac{\omega - q}{\omega + q}) \right) \right]^{-1}$$

$$\Delta_T(q) = \left[\omega^2 - q^2 - \frac{\mu^2}{2} - \frac{(\omega^2 - q^2)\mu^2}{2q^2} \left(1 + \frac{\omega}{2q} \ln(\frac{\omega - q}{\omega + q}) \right) \right]^{-1}$$

After $\int d\phi/2\pi$ integral, where ϕ is the angle between the (pq) and (kq) planes.

$$egin{array}{lll} C_{LL} &=& \left((1+rac{\omega}{2E})^2 - rac{q^2}{4E^2}
ight) \left((1-rac{\omega}{2E_k})^2 - rac{q^2}{4E_k^2}
ight) \ C_{LT} &=& 0 \ C_{TT} &=& rac{1}{2} \left(v^2 - rac{\omega^2}{q^2} \left(1 + rac{\omega}{2E}
ight)^2 + rac{1}{E} \left(\omega + rac{q^2}{4E}
ight)
ight) \left(v_k^2 - rac{\omega^2}{q^2} \left(1 - rac{\omega}{2E_k}
ight)^2 - rac{1}{E_k} \left(\omega - rac{q^2}{4E_k}
ight)
ight) \end{array}$$

Average energy loss

Multiple Collisions

NOT continuum limit diffusion process

Results – RHIC - Electrons

Results – RHIC - Electrons

ω << T, μ
assumption /
approximation is
NOT ok to calculate
av en loss

Must take into account medium recoil.

HTL extrapolation

$$\langle |M|^2 \rangle = 16g^4 k_{CF} E^2 E_k^2 \left[C_{LL} |\Delta_L(q)|^2 + 2C_{LT} Re(\Delta_L(q) \Delta_T^*(q)) + C_{TT} |\Delta_T(q)|^2 \right]$$

$$egin{array}{lcl} C_{LL} &=& \left((1+rac{\omega}{2E})^2 - rac{q^2}{4E^2}
ight) \left((1-rac{\omega}{2E_k})^2 - rac{q^2}{4E_k^2}
ight) \ C_{LT} &=& 0 \ C_{TT} &=& rac{1}{2} \left(v^2 - rac{\omega^2}{q^2} \left(1 + rac{\omega}{2E}
ight)^2 + rac{1}{E} \left(\omega + rac{q^2}{4E}
ight)
ight) \left(v_k^2 - rac{\omega^2}{q^2} \left(1 - rac{\omega}{2E_k}
ight)^2 - rac{1}{E_k} \left(\omega - rac{q^2}{4E_k}
ight)
ight) \end{array}$$

HTL-AMY extrapolation

$$\langle |M|^2 \rangle = g^4 k_{CF} + 16g^4 k_{CF} E^2 E_k^2 \left[C_{LL} |\Delta_L(q)|^2 + 2C_{LT} Re(\Delta_L(q) \Delta_T^*(q)) + C_{TT} |\Delta_T(q)|^2 \right]$$

$$\begin{split} C_{LL} &= \left(1 + \frac{\omega}{2E}\right)^2 \left(1 - \frac{\omega}{2E_k}\right)^2 \\ C_{LT} &= 0 \\ C_{TT} &= \frac{1}{2} \left(v^2 - \left(\frac{\omega}{q} + \frac{\omega^2 - q^2}{2Eq}\right)^2\right) \left(v_k^2 - \left(\frac{\omega}{q} - \frac{\omega^2 - q^2}{2E_kq}\right)^2\right) \end{split}$$

Result

Why are HTL and HTL-AMY so different?

Redistribution of longitudinal and transverse components. Longitudinal and transverse components are screened by the medium in different ways.

What about q_{perp} distributions?

p=10GeV: $\langle q_{perp}^2 \rangle \approx 0.25 \text{ GeV}^2/\text{fm for T} = 0.24\text{GeV}$

What about q_{perp} distributions?

If radiation is driven by $<q_{perp}^{2}>$, then we are not in the regime where:

Diagram from Arnold, Moore and Yaffe: JHEP 0206:030,2002