Quarkonium production in coherent AA collisions and small-x physics

Magno V.T. Machado

(In collaboration with Victor Gonçalves, IFM-UFPel, Brazil)

Universidade Federal do Pampa - UNIPAMPA, Brazil

Outline

- Short motivation
- Ultra-Peripheral Collisions (UPCs) of heavy ions
- Quarkonium production in UPCs
- Model for photonuclear cross section color dipole approach
- Results for exclusive J/Ψ and Υ production
- Summary.

Motivation

- UPCs are defined as collisions in which no hadronic interactions occur due to large spatial separation between projectile and target.
- Interactions are mediated by the electromagnetic field.
- One type of UPC is the photonuclear interactions, in which a photon from the projectile interacts with the hadronic component of target.
- Good reasons to study electromagnetic interactions at hadron colliders:
 - (1) Range of accessible photon energies will be strongly increased at the LHC and the equivalent luminosities will be higher than at existing electron colliders.
 - (2) Using nuclear beams effects of very strong fields can be studied (small-x physics, nuclear shadowing, ...).

Motivation

- Concerning quarkonium production in UPCs, if the photon spectrum is known, $d\sigma/dy$ is a direct measure of the meson photoproduction cross section for a given photon energy.
- In the LHC (PbPb mode) the photon energies for production around mid-rapidity correspond to a gluon x-values of 6×10^{-4} for J/Ψ production and 2×10^{-3} for Υ production. Lower values of x can be reached away from mid-rapidity.
- Experimental feasibility of studying exclusive meson production in UPCs has been demonstrated at RHIC (coherent ρ production measured by STAR and J/Ψ production in PHENIX).
- The Yellow Report of Prediction for UPCs at the LHC has been recently completed.

UPCs of heavy ions

- The electromagnetic field of a relativistic particle corresponds to an equivalent flux of photons.
- In the case of interaction between two nuclei, in general the photon spectrum is computed as a function of impact parameter in a semi-classical approach.
- ▶ Thus, interactions where the nuclei interact strongly can be excluded (roughly speaking, considering $b > 2R_A$).
- We consider an analytical expression for photon spectrum:

$$\frac{dn_{\gamma}}{dk} = \frac{2Z^{2}\alpha_{em}}{\pi k} \left[\bar{\eta} K_{0}(\bar{\eta}) K_{1}(\bar{\eta}) + \frac{\bar{\eta}^{2}}{2} \left(K_{1}^{2}(\bar{\eta}) - K_{0}^{2}(\bar{\eta}) \right) \right],$$

• The photon energy is k and $\bar{\eta} = 2kR_A/\gamma_L$.

Quarkonium production in UPCs

The total exclusive cross section for heavy mesons can be written as an integral over the equivalent photon energy:

$$\sigma(A + A \to A + A + V) = 2 \int \sigma_{\gamma+A\to V+A}(k) \frac{dn_{\gamma}}{dk} dk$$

- The rapidity y of the produced vector meson is related to its mass, M_V , and the photon energy through $k = (M_V/2) \exp(y)$.
- The rapidity distribution can be obtained as

$$\frac{d\sigma(AA \to AA + V)}{dy} = k_1 \frac{dn_{\gamma}}{dk_1} \sigma_{\gamma A \to VA}(k_1) + k_2 \frac{dn_{\gamma}}{dk} \sigma_{\gamma A \to VA}(k_2),$$

▶ Here, $k_{1,2} = (M_V/2) \exp(\pm y)$. At mid-rapidity, $k_1 = k_2$ and the contributions from the two terms are equal.

Photonuclear cross section

The photonuclear cross section can be written as

$$\sigma(\gamma A \to V A) = \left. \frac{d\sigma \left(\gamma A \to V A \right)}{dt} \right|_{t=0} \int_{t_{min}}^{\infty} d|t| |F_A(t)|^2$$

- $F_A(t)$ is the nuclear form factor and $t_{min} = (M_V^2/4k\gamma_L)^2$.
- Different implementations of $\frac{d\sigma(\gamma A \rightarrow V A)}{dt}|_{t=0}$ in literature.
- Klein and Nystrand: consider hadronic shadowing negligible for J/Ψ and Υ , $\frac{d\sigma(\gamma A \to V A)}{dt}|_{t=0} = A^2 \frac{d\sigma(\gamma p \to V p)}{dt}|_{t=0}$. Last quantity is taken from a fit to HERA data for vector mesons (and its corresponding extrapolation).
- M. Strikman and collaborators: consider leading twist shadowing $\frac{d\sigma(\gamma A \to V A)}{dt}|_{t=0} = \frac{[xg_A(x,\bar{Q})]^2}{[xg_N(x,\bar{Q})]^2} \frac{d\sigma(\gamma p \to V p)}{dt}|_{t=0}$. Last quantity also taken from fits to HERA data.

Model for photonuclear reaction

• We consider the color dipole approach to compute the photonuclear cross section (valid for $x \lesssim 10^{-2}$).

$$\mathcal{A}(\gamma A \to V A) = -i \int dz \, d^2 \boldsymbol{r} \, \Psi_V^*(z, r) \, \sigma_{dip}^{\mathrm{nuc}}(\boldsymbol{x}, \boldsymbol{r}; A) \, \Psi_{\gamma}(z, r, Q^2)$$

• The basic quantities are the photon and vector meson wavefunction (Ψ_{γ} and Ψ_{V}) as well as the dipole-target cross section, $\sigma_{dip}^{\mathrm{nuc}}(x,r;A)$.

Meson wave function

- We consider the simple Gaus-LC wave functions, which are shown to reproduce DESY-HERA data for vector meson photoproduction and electroproduction.
- Small sensitivity to a different choice for the meson wave function (for instance, boosted Gaussian) in photoproduction.
- The parameters of meson wave functions are determined by requiring the normalization condition and decay width.
- Photon wave functions are known.

Dipole-nucleus cross section

Dipole-target cross section can be extended for nuclear case using the Glauber-Gribov picture:

$$\sigma_{dip}^{\text{nuc}}(x, r; A) = 2 \int d^2b \left\{ 1 - \exp\left[-\frac{1}{2} A T_A(b) \sigma_{dip}(x, r)\right] \right\}$$

- Nuclear profile function $T_A(b)$ (from Wood-Saxon), where b is the impact parameter of the center of the dipole relative to the center of the nucleus.
- It sums up all the multiple elastic rescattering diagrams of the $q\overline{q}$ pair and is justified for large coherence length.
- Approach describes (scarce) data for the nuclear ratios for $x \le 10^{-2}$ (for instance, see Armesto, EPJC26 (2002) 35).
- The main input is the dipole-proton cross section, $\sigma_{dip}(x,r)$.

Dipole-proton cross section

We take recent parameterization based on the saturation physics [lancu-ltakura-Munier, PLB590:199, 2004]:

$$\sigma_{dip}^{\mathrm{CGC}}\left(x,\boldsymbol{r}\right) = \sigma_{0} \, \left\{ \begin{array}{l} \mathcal{N}_{0} \left(\frac{\bar{\tau}^{2}}{4}\right)^{\gamma_{\mathrm{eff}}\left(x,r\right)}, & \text{for } \bar{\tau} \leq 2\,, \\ 1 - \exp\left[-a\,\ln^{2}\left(b\,\bar{\tau}\right)\right]\,, & \text{for } \bar{\tau} > 2\,, \end{array} \right.$$

where
$$\bar{\tau}=rQ_{\rm sat}$$
 and $\gamma_{\rm eff}\left(x,\,r\right)=\gamma_{\rm sat}+\frac{\ln(2/\tilde{\tau})}{\kappa\,\lambda\,Y}$, where $\gamma_{\rm sat}=0.63$, $\kappa=9$ and $Y=\ln(1/x)$.

- Saturation scale is given by $Q_{\rm sat} = (x_0/x)^{\lambda/2}$.
- Most recent fit to small-x HERA data: $x_0 = 2.7 \times 10^{-7}$, $\lambda = 0.177$ and $\sigma_0 = 35.7$ mb ($\chi^2/\mathrm{dof} = 0.9$ for $Q^2 = [0.5,45]$).
- Ref.: Kowalski, Motyka and Watt, PRD74: 074016 (2006).
- Quark masses are $m_q = 0.14$ GeV and $m_c = 1.4$ GeV.

Corrections for exclusive processes

- The real part of amplitude can be accounted for by multiplying the differential cross section by a factor $(1 + \beta^2)$.
- The ratio of real to imaginary parts is given by:

$$\beta = \tan\left(\frac{\pi\alpha}{2}\right), \quad \text{where } \alpha \equiv \frac{\partial \ln\left[\mathcal{A}\left(\gamma A \to V A\right)\right]}{\partial \ln(W^2)}$$

- For exclusive production, off-diagonal gluon distribution should be used, since the two exchanged gluons carry different fractions x and x' of the proton's momentum.
- Off-forward effects can be (phenomenologically) accounted for by multiplying the differential cross section by a factor R_g^2 [Shuvaev at al., Phys. Rev D60 014015 (1999)], where

$$R_g = \frac{2^{2\alpha+3}}{\sqrt{\pi}} \frac{\Gamma\left(\alpha + \frac{5}{2}\right)}{\Gamma\left(\alpha + 4\right)}$$

Numerical results - $J/\Psi(1S)$

Photoproduction of $V = J/\Psi(3097)$:

- Photonuclear cross section as a function of $W_{\gamma A}$.
- Extrapolation to $W_{\gamma A}=1$ TeV.
- ullet Differential cross section as a function of |t|.

Numerical results - $\Upsilon(1S)$

Photoproduction of $V = \Upsilon(1S)$:

- Photonuclear cross section as a function of $W_{\gamma A}$.
- Comparison with the (scarse) DESY-HERA data.
- We use bottom mass $m_b = 4.2$ GeV.

Photoproduction in AA collisions

J/Ψ photoproduction in \overline{AA} collisions

• Integrated cross section at the LHC: $\frac{d\sigma(y=0)}{dy} = 6$ mb.

y-cut	this work	FS	KN	hadropr. $[A^2 \times \sigma(pp)]$
total	32 mb	15 mb	32 mb	820 mb
y < 1	11 mb	_	_	_

Photoproduction in AA collisions

Υ photoproduction in AA collisions

• Integrated cross section at the LHC: $\frac{d\sigma (y=0)}{dy} = 27 \mu b$.

y-cut	this work	FS	KN	hadropr. $[A^2 \times \sigma(pp)]$
total	96 μ b	78 μ b	170 μ b	8 mb
y < 1	48 μb		_	_

Comments and remarks

- In the pA collisions the quasireal photons can be emmitted by both the nucleus and the proton.
- The expression for the cross section takes the form

$$\frac{d\sigma(pA \to pA + V)}{dydt} = \frac{dn_{\gamma}^{A}}{dk_{1}} \frac{\sigma_{\gamma p \to V p}(y)}{dt} + \frac{dn_{\gamma}^{p}}{dk_{2}} \frac{\sigma_{\gamma A \to V A}(-y)}{dt},$$

- $\frac{dn_{\gamma}^{p}}{dk_{2}}$ is the photon flux of the accelerated proton.
- Allow to do phenomenology for \(\gamma p\) and \(\gamma A\) interactions.
- ▶ Finally, a background to the coherent production is the incoherent interaction, where the final state nucleus is excited, $\gamma A \rightarrow V A'$.

Summary

- We compute the coherent quarkonium $(J/\Psi \text{ and } \Upsilon)$ production in UPCs for PbPb scattering at the LHC.
- For the photonuclear cross section we consider the color dipole approach, with a phenomenological model for the dipole cross section.
- The results are compatible with other phenomenological approaches in literature.
- An extension for pA collisions and an estimation of incoherent production remain to be done.