Heavy-quark production from Glauber-Gribov theory at LHC

K. Tywoniuk¹ I. C. Arsene¹ L. Bravina^{1,2}
A. B. Kaidalov³ E. Zabrodin^{1,2}

¹Department of Physics University of Oslo

²Institute of Nuclear Physics Moscow State University

³Institute of Theoretical and Experimental Physics

June 1st 2007
"Heavy Ion Collisions at LHC - Last call for predictions"
CERN

Outline

- 1 Introduction why is LHC "high energy"?
- Nuclear Modification Factor results for J/psi in d+Au @ RHIC predictions for p+Pb @ LHC tools for Pb+Pb modelling
- 3 $\alpha(x_F)$ dependence what happens at mid-rapidity with energy? scaling breaking appearence
- 4 Conclusions

Coherence length in hadron-nucleus collision

Mandelstam Nuov. Cim. 30 (1963) 1113, 1127,1148

"Planar" diagram - Glauber model

"Non-planar" diagram

Coherence length in hadron-nucleus collision

Mandelstam Nuov. Cim. 30 (1963) 1113, 1127,1148

"Non-planar" diagram

- the space-time picture does not correspond to longitudinally ordered multiple scattering
- fluctuation prepared long before collision occurs
- LHC is definitely in "high-energy regime". Coherent production for both light and heavy particles already at y=0
- is RHIC?

Coherence length in hadron-nucleus collision

Mandelstam Nuov. Cim. 30 (1963) 1113, 1127,1148

"Non-planar" diagram

- the space-time picture does not correspond to longitudinally ordered multiple scattering
- fluctuation prepared long before collision occurs
- LHC is definitely in "high-energy regime". Coherent production for both light and heavy particles already at y=01
- is RHIC?

Coherence length in hadron-nucleus collision

Mandelstam Nuov. Cim. 30 (1963) 1113, 1127,1148

"Non-planar" diagram

- the space-time picture does not correspond to longitudinally ordered multiple scattering
- fluctuation prepared long before collision occurs
- LHC is definitely in "high-energy regime". Coherent production for both light and heavy particles already at y=0!
- is RHIC?

Coherence length in hadron-nucleus collision

Mandelstam Nuov. Cim. 30 (1963) 1113, 1127,1148

"Non-planar" diagram

- the space-time picture does not correspond to longitudinally ordered multiple scattering
- fluctuation prepared long before collision occurs
- LHC is definitely in "high-energy regime". Coherent production for both light and heavy particles already at y=0!
- is RHIC?

Details - hep-ph/0705.1596

- Shadowing is connected with gluon diffractive distribution function, measured at HERA.
- Not strongly dependent of scheme at low-x.

Production of a heavy-quark state at high-energy

Why is it important?

J/ψ production in pA collisions show interesting features at different energies:

- absorption in nuclear matter ($\sigma^{abs} \sim 5$ mb) at low energies, interpreted within a probabilistic Glauber model
- puzzle at RHIC, σ^{abs} much smaller (nobody expected this)
- at high energies, production of heavy state probes the very low-x distribution of the nuclear structure function

Also ↑ production should follow a similar pattern.

Important to understand what happens in pA to get a hold on final-state effects in AA!

Production of a heavy-quark state at high-energy

Appearance of "high-energy regime"

Critical energy for heavy quark production $E_C = \frac{M_{c\bar{c}}^2}{2x_+} \frac{R_A}{\sqrt{3}}$

- for E < E_c: AGK cancellation is not valid and absorptive corrections are present
 - → low-energy absorption formula!
- for $E > E_c$: coherent production of the heavy state

Boreskov, Capella, Kaidalov, Thanh Van, PRD 47 (1993) 919

J/ψ production @ RHIC

Shadowing and $\sigma_{abs} = 0$

 $\sigma_{abs} = 0$ and shadowing reproduce the data at RHIC.

Predictions for p+Pb @ LHC

 $J/\psi, \Upsilon$ and open heavy-flavour

The same suppression is predicted for open heavy-flavour.

Predictions for p+Pb @ LHC

 $J/\psi, \Upsilon$ and open heavy-flavour

The same suppression is predicted for open heavy-flavour.

- 20% suppression from CNM effects alone
- important input suppression from co-movers alone gives too strong effect!

Shadowing

- strong shadowing effect, a factor of \sim 2.5
- shadowing decreases with rapidity

Cold-nuclear matter effects in A+A collisions

Density of produced particles

Shadowing effects are also crucial for total multiplicity and density of charged particles in the initial state of the collision.

$\alpha(x_F)$ for light and heavy particles

Breaking of scaling! Reappearance...

- change of behaviour of α(x_F) going from low-energy to high-energy regime
- α(x_F = 0) sensitive to the disappearance of low-energy effects and onset of shadowing
- RHIC on the border both for light and heavy particle production

$\alpha(x_F)$ for light and heavy particles

Breaking of scaling! Reappearance...

- change of behaviour of α(x_F) going from low-energy to high-energy regime
- α(x_F = 0) sensitive to the disappearance of low-energy effects and onset of shadowing
- RHIC on the border both for light and heavy particle production

$\alpha(x_F)$ for light and heavy particles

Breaking of scaling! Reappearance...

- scaling with x_F for low energies due to energy-momentum conservation
- scaling with x_2 will appear for RHIC and higher energies

Conclusions

- LHC is "high-energy regime" different underlying space-time picture of the interaction
- strong shadowing effects are predicted, important in p+Pb collisions and as initial condition for Pb+Pb modeling of final-state effects
- x_2 scaling of α will appear

Conclusions

- LHC is "high-energy regime" different underlying space-time picture of the interaction
- strong shadowing effects are predicted, important in p+Pb collisions and as initial condition for Pb+Pb modeling of final-state effects
- x_2 scaling of α will appear

Conclusions

- LHC is "high-energy regime" different underlying space-time picture of the interaction
- strong shadowing effects are predicted, important in p+Pb collisions and as initial condition for Pb+Pb modeling of final-state effects
- x_2 scaling of α will appear

BACKUP I

Parameterization of nuclear parton densities

$$\begin{bmatrix} \frac{\mathsf{d}\sigma^{\mathcal{D}}_{\gamma^*N}}{\mathsf{d}M^2\mathsf{d}t} \end{bmatrix}_{\mathsf{L}=0} = \frac{4\pi^2\alpha_{\mathsf{e}m}B}{\mathsf{Q}^2(\mathsf{Q}^2+M^2)}\,\mathsf{X}_{\mathsf{P}}\mathsf{F}^{(3)}_{2\mathcal{D}}$$

FIT A

 parameterized at Q₀ = 1.75 GeV²

FIT B

- parameterized at $Q_0 = 2.5$ \mbox{GeV}^2
- maximal uncertainty in gluon dPDF due to mixing with quarks at $\beta > 0.3$

H1 Collaboration, hep-ex/0606003, hep-ex/0606004

BACKUP II

Schwimmer model

Schwimmer Nucl. Phys. B 94 (1975) 445

- similarity to the B-K equation of dipole splitting
- relevant for hA collisions at high energies
- exact solution of the Reggeon field theory

$$\sigma^{\text{Sch}}_{\text{hA}} \quad = \quad \sigma_{\text{hN}} \int d^2b \frac{\text{AT}_{\text{A}}(b)}{1 + (\text{A} - 1)f(\textbf{x}, \, Q^2)T_{\text{A}}(b)} \; , \label{eq:sch}$$

$$f(x, Q^2) = 4\pi \int_{x}^{x_P^{max}} dx_{IP} B(x_{IP}) \frac{F_{2D}^{(3)}(x_{IP}, Q^2, \beta)}{F_2(x, Q^2)} F_A^2(t_{min.})$$

BACKUP III

Final-state effects for light particles - co-movers

