Prompt photon production at LHC: a "multi-purpose" observable

François Arleo
CERN & LAPTH, Annecy

Last Call for Predictions

May-June 2007 - CERN

Back-up

Outline

Outline
Isolated photons in p A
Inclusive photons in A A
Photon-tagged correlations

- Single photon in p A collisions
 - probing gluon shadowing with isolated photons
- Single photon in A A collisions
 - probing energy loss with inclusive photons
- Double photon and pion in A A collisions
 - probing medium-modified fragmentation functions

```
[ FA, Gousset, in preparation ]
[ FA, JHEP 09 (2006) 015 ]
[ FA, Aurenche, Belghobsi, Guillet, JHEP 11 (2004) 009 ]
```


Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Isolated photons in p A collisions:

measuring gluon shadowing

Gluon shadowing

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Gluon distributions in nuclei over that in a proton

$$R_G(x, Q^2) = G_A(x, Q^2) / G_p(x, Q^2)$$

poorly constrained experimentally!

Gluon shadowing

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

From NMC data

[Gousset, Pirner 1996]

- lacktriangle Tiny constraints from the scaling violation of $F_2^{
 m A}(x,Q^2)$
- Fairly large $x \sim 10^{-2} 10^{-1}$

Gluon shadowing

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Gluon distributions in nuclei over that in a proton

$$R_G(x, Q^2) = G_A(x, Q^2) / G_p(x, Q^2)$$

poorly constrained experimentally!

How to probe small-x gluon shadowing at LHC?

- which observables
- why prompt photons

Observables

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Choose your favourite one!

Jets

- :-) high rates, rich phenomenology, forward rapidities
- :-(large scales $Q^2 \gtrsim 10^3 \text{ GeV}^2$
- Large p₊ dileptons
 - :-) no strong background
 - :-(very low rates
- Heavy-bosons
 - :-) constraints on sea-quark shadowing
 - :-(large scales $Q^2 \gtrsim 10^4 \text{ GeV}^2$
- Prompt photons
 - :-) low $Q^2 \gtrsim 10-10^3$ GeV², rich phenomenology
 - :-(parton-to-photon fragmentation process

Observables

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Aurenche et al. 2006

■ Good description of isolated/inclusive photon world-data

Observables

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Choose your favourite one!

Jets

- :-) high rates, rich phenomenology, forward rapidities
- :-(large scales $Q^2 \gtrsim 10^3 \text{ GeV}^2$
- Large p₊ dileptons
 - :-) no strong background
 - :-(very low rates
- Heavy-bosons
 - :-) constraints on sea-quark shadowing
 - :-(large scales $Q^2 \gtrsim 10^4 \text{ GeV}^2$
- Prompt photons
 - :-) low $Q^2 \gtrsim 10-10^3$ GeV², rich phenomenology
 - :-(parton-to-photon fragmentation process

Kinematics

Isolated photons in p A

Gluon shadowing

Observables

Photons in pQCDPredictions

Predictions

Outline

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

- Photons and jets are clearly complementary
- lacktriangleq Photons cover small Q^2 where shadowing should be large

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

At leading-order $\mathcal{O}\left(\alpha \ \alpha_s\right)$

■ Compton scattering $q g \rightarrow q \gamma$

lacksquare Annihilation process $q \; ar q o g \; \gamma$

At high energy, only the Compton scattering process is relevant

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

At leading-order $\mathcal{O}\left(\alpha \ \alpha_s\right)$

$$\frac{\mathrm{d}^{3}\sigma(p\,\mathrm{A}\to\gamma\,\mathrm{X}\,)}{\mathrm{d}y\,\mathrm{d}^{2}p_{\perp}} \propto \int_{0}^{1} \mathrm{d}v\,\tilde{F}_{_{2}}^{p} \left(\frac{x_{\perp}e^{y}}{2v}\right) G^{\mathrm{A}} \left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \left|\mathcal{M}\right|^{2}(v) + G^{p} \left(\frac{x_{\perp}e^{y}}{2v}\right) \tilde{F}_{_{2}}^{\mathrm{A}} \left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \left|\mathcal{M}\right|^{2}(1-v)$$

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

At leading-order $\mathcal{O}\left(\alpha \ \alpha_s\right)$

$$\frac{\mathrm{d}^{3}\sigma(p\,\mathrm{A}\to\gamma\,\mathrm{X}\,)}{\mathrm{d}y\,\mathrm{d}^{2}p_{\perp}} \propto \int_{0}^{1} \mathrm{d}v\,\tilde{F}_{2}^{p} \left(\frac{x_{\perp}e^{y}}{2v}\right) G^{\mathrm{A}} \left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \left|\mathcal{M}\right|^{2}(v) + G^{p} \left(\frac{x_{\perp}e^{y}}{2v}\right) \tilde{F}_{2}^{\mathrm{A}} \left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \left|\mathcal{M}\right|^{2}(1-v)$$

Since $R_{\scriptscriptstyle G}(x)$ and $R_{\scriptscriptstyle F_2}(x)$ vary slowly wrt G(x) and $F_{\scriptscriptstyle 2}(x)$

$$R_{pA}(p_{\perp}, y) \simeq c(y) R_{F_0}(x_{\perp}e^{-y}) + [1 - c(y)] R_{G}(x_{\perp}e^{-y})$$

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

At leading-order $\mathcal{O}\left(\alpha \ \alpha_s\right)$

$$\frac{\mathrm{d}^{3}\sigma(p\,\mathrm{A}\to\gamma\,\mathrm{X}\,)}{\mathrm{d}y\,\mathrm{d}^{2}p_{\perp}} \propto \int_{0}^{1} \mathrm{d}v\,\tilde{F}_{2}^{p} \left(\frac{x_{\perp}e^{y}}{2v}\right) G^{\mathrm{A}} \left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \left|\mathcal{M}\right|^{2}(v) + G^{p} \left(\frac{x_{\perp}e^{y}}{2v}\right) \tilde{F}_{2}^{\mathrm{A}} \left(\frac{x_{\perp}e^{-y}}{2(1-v)}\right) \left|\mathcal{M}\right|^{2}(1-v)$$

Since $R_{\scriptscriptstyle G}(x)$ and $R_{\scriptscriptstyle F_2}(x)$ vary slowly wrt G(x) and $F_{\scriptscriptstyle 2}(x)$

$$R_{pA}(p_{\perp}, y) \simeq c(y) R_{F_2}(x_{\perp}e^{-y}) + [1 - c(y)] R_G(x_{\perp}e^{-y})$$

but . . .

Caveat

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Photons can also be produced by fragmentation

$$\frac{\mathrm{d}^3 \sigma^{\mathrm{frag}}(\boldsymbol{p} \, \boldsymbol{\mathsf{A}} \to \gamma \, \boldsymbol{\mathsf{X}}\,)}{\mathrm{d} \boldsymbol{y} \, \mathrm{d}^2 \boldsymbol{p}_{\perp}} \propto \int_0^1 \, \mathrm{d} \boldsymbol{z} \int_0^1 \, \mathrm{d} \boldsymbol{v} \, \dots \left(\boldsymbol{x}_{\perp}/\boldsymbol{z}, \boldsymbol{Q}^2\right) \, D_{\gamma/k}(\boldsymbol{z}, \boldsymbol{Q}^2)$$

The extra integration spoils the relationship $R_{_{p\mathrm{A}}} \Leftrightarrow R_{_{F_{2}}}$ and $R_{_{G}}$

Caveat

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Photons can also be produced by fragmentation

$$\frac{\mathrm{d}^3 \sigma^{\mathrm{frag}}(p \, \mathbf{A} \to \gamma \, \mathbf{X})}{\mathrm{d} y \, \mathrm{d}^2 p_{\perp}} \propto \int_0^1 \, \mathrm{d} z \int_0^1 \, \mathrm{d} v \, \dots \left(x_{\perp}/z, Q^2 \right) \, D_{\gamma/k}(z, Q^2)$$

The extra integration spoils the relationship $R_{_{p\mathrm{A}}} \Leftrightarrow R_{_{F_2}}$ and $R_{_G}$

We get rid of them by means of isolation criteria

$$E_{\perp}^{\mathrm{had}} \leq E_{\perp}^{\mathrm{max}}$$

for particles in a cone

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R^2$$

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Isolated photons in p A at LHC

FA, Gousset 2007

Around mid-rapidity

$$R_{_{p{\rm A}}}(p_{_\perp},y) \simeq \frac{1}{2} \left[R_{_{F_2}}(x_{_\perp}e^{-y}) \ + \ R_{_G}(x_{_\perp}e^{-y}) \right]$$

At (very) forward rapidity

$$R_{_{p\mathrm{A}}}(p_{_\perp},y) \simeq R_{_G}(x_{_\perp}e^{-y})$$

At (very) backward rapidity

$$R_{_{p\mathcal{A}}}(p_{_\perp},y) \simeq R_{_{F_2}}(x_{_\perp}e^{-y})$$

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Isolated photons in p A at LHC

FA, Gousset 2007

Around mid-rapidity

$$R_{_{p{\rm A}}}(p_{_\perp},y) \simeq \frac{1}{2} \left[R_{_{F_2}}(x_{_\perp}e^{-y}) \ + \ R_{_G}(x_{_\perp}e^{-y}) \right]$$

At (very) forward rapidity

$$R_{_{p\mathrm{A}}}(p_{_\perp},y) \simeq R_{_G}(x_{_\perp}e^{-y})$$

At (very) backward rapidity

$$R_{_{p\mathcal{A}}}(p_{_\perp},y) \simeq R_{_{F_2}}(x_{_\perp}e^{-y})$$

To illustrate/check this

let's compute $R_{pA}(x_{\perp},y)$ at y=0,2.5,-2.5 at NLO using nDSg nuclear PDF in p A collisions ($\sqrt{s_{_{
m NN}}}=8.8$ TeV)

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Mid-rapidity

- 20% attenuation at $x_{\perp} \sim 10^{-3}$ measurable (statistically)
- \blacksquare perfect (< 2-3%) matching between $R_{p{\rm A}}$ and nuclear density ratios

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Forward rapidity y = 2.5

■ Gives "direct" access to R_G (within 5%) at $x = 10^{-4} - 10^{-3}$!

Problem: no p p collision at $\sqrt{s}=8.8~{\rm TeV}$

How to measure $R_{_{G}}(x)$ without any p p reference data ?

```
Outline

Isolated photons in p A

Gluon shadowing

Observables

Photons in pQCD

Predictions

Inclusive photons in A A
```

Photon-tagged correlations

Summary

Back-up

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Problem: no p p collision at $\sqrt{s} = 8.8 \text{ TeV}$

How to measure $R_{_{G}}(x)$ without any p p reference data ?

Compare forward w/ backward production in p A collisions

$$\frac{\mathrm{d}\sigma(p\;\mathrm{A}\to\;\gamma(+y)\;\mathrm{X}\,)}{\mathrm{d}\sigma(p\;\mathrm{A}\to\;\gamma(-y)\;\mathrm{X}\,)} = R_{_{p\mathrm{A}}}(x_{_{\perp}},+y)\big/R_{_{p\mathrm{A}}}(x_{_{\perp}},-y)$$

$$\simeq R_{_{G}}(x_{_{\perp}}e^{-y})\big/R_{_{F_{2}}}(x_{_{\perp}}e^{y})$$

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Problem: no p p collision at $\sqrt{s} = 8.8 \text{ TeV}$

How to measure $R_{_{G}}(x)$ without any p p reference data ?

Compare forward w/ backward production in p A collisions

$$\frac{\mathrm{d}\sigma(p\;\mathrm{A}\to\;\gamma(+y)\;\mathrm{X}\,)}{\mathrm{d}\sigma(p\;\mathrm{A}\to\;\gamma(-y)\;\mathrm{X}\,)} = R_{p\mathrm{A}}(x_{\perp},+y)/R_{p\mathrm{A}}(x_{\perp},-y)$$

$$\simeq R_{G}(x_{\perp}e^{-y})/R_{F_{2}}(x_{\perp}e^{y})$$

 R_{F_2} at large x gives access to R_G at small x !

Outline

Isolated photons in p A

- Gluon shadowing
- Observables
- Photons in pQCD
- Predictions

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

- Encouraging yet a larger *y* would be better
- Need to correct for trivial isospin effects

Outline

Isolated photons in p A

Inclusive photons in A A

- Photon quenching
- RHIC data
- Extrapolating to LHC
- Predictions

Photon-tagged correlations

Summary

Back-up

Inclusive photons in A A collisions:

probing energy loss effects (?)

You said "energy loss"?

Outline

Isolated photons in p A

Inclusive photons in A A

- Photon quenching
- RHIC data
- Extrapolating to LHC
- Predictions

Photon-tagged correlations

Summary

Back-up

Naively

Photons are not sensitive to quark-gluon plasma formation

because they are colour neutral ("initial-state observable")

You said "energy loss"?

Outline

Isolated photons in p A

Inclusive photons in A A

- Photon quenching
- RHIC data
- Extrapolating to LHC
- Predictions

Photon-tagged correlations

Summary

Back-up

Naively

Photons are not sensitive to quark-gluon plasma formation

because they are colour neutral ("initial-state observable")

... may not be that true because of the fragmentation component

[NB: Recall however that "direct" and "fragmentation" photons is to a great extent arbitrary beyond LO]

Fragmentation photon quenching

Outline

Isolated photons in p A

Inclusive photons in A A

- Photon quenching
- RHIC data
- Extrapolating to LHC
- Predictions

Photon-tagged correlations

Summary

Back-up

The idea

The multiple scattering of hard partons leads to jet quenching

... may also apply for collinear photons

Jet quenching implies quenching of fragmentation photons!

[Jalilian-Marian, Orginos, Sarcevic 01]

[FA, Aurenche, Belghobsi, Guillet 04]

RHIC data

Quenching factors measured by PHENIX (preliminary)

Outline

Isolated photons in p A

Inclusive photons in A A

Photon quenching

RHIC data

Extrapolating to LHC

Predictions

Photon-tagged correlations

Summary

Back-up

[FA 2006]

- lacktriangle Data are slightly below 1 at large p_{\perp}
- Isospin does half the job at $p_{\perp} = 18 \text{ GeV}$

Back-up

RHIC data

Quenching factors measured by PHENIX (preliminary)

Outline

Isolated photons in p A

Inclusive photons in A A

Photon quenching
RHIC data
Extrapolating to LHC
Predictions

Photon-tagged correlations

Summary

[FA 2006]

The medium seems to (slightly) suppress the prompt photon yield in A A collisions

Extrapolating to LHC

Outline

Isolated photons in p A

Inclusive photons in A A

- Photon quenching
- RHIC data
- Extrapolating to LHC
- Predictions

Photon-tagged correlations

Summary

Back-up

In a Bjorken expansion (with $t_0 \ll L$)

$$\omega_c \simeq \hat{q}(t_0) t_0 L$$

$$\sim Q_s^2 \sim (\sqrt{s_{_{\rm NN}}})^{\lambda}$$

Using
$$\lambda=0.3$$
 (DIS) and $\omega_c=20$ GeV (RHIC)

$$\omega_c^{\mathrm{LHC}} \simeq 50 \; \mathrm{GeV}$$

The calculation is carried out at leading-order using

- CTEQ6M PDF
- nDSg nuclear distribution ratios
- BFG fragmentation functions into photons
- Modified w/ finite-energy BDMPS quenching weights
- All scales $M = \mu = M_F = p_{\perp}$

Outline

Isolated photons in p A

Inclusive photons in A A

- Photon quenching
- RHIC data
- Extrapolating to LHC
- Predictions

Photon-tagged correlations

Summary

Back-up

- \blacksquare Significant photon quenching below $p_{\perp} \lesssim 50 \; \mathrm{GeV}$
- Weaker energy loss effects at forward rapidity

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

• Momentum imbalance

• Predictions

Summary

Back-up

Photon-tagged correlations:

probing (medium) fragmentation functions

To leading-order in α_s

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Momentum imbalance

Predictions

Summary

Back-up

To leading-order in α_s

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Momentum imbalance

Predictions

Summary

Outline

Back-up

Introducing the momentum imbalance variable

$$z_{\gamma\pi} \equiv -rac{\mathbf{p}_{\perp\pi}.\mathbf{p}_{\perp\gamma}}{|\mathbf{p}_{\perp\gamma}|^2}$$

LO kinematics

$$z_{\scriptscriptstyle\gamma\pi} \simeq \frac{p_{\scriptscriptstyle\perp\pi}}{p_{\scriptscriptstyle\perp\gamma}}$$

Momentum conservation

$$p_{\perp_{\gamma}} = k_{\perp}$$

To leading-order in α_s

Y

Introducing the momentum imbalance variable . . .

 \dots allows for the estimate of the fragmentation variable z!

(exp.)
$$z_{\gamma\pi} \iff z$$
 (th.

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Momentum imbalance

Predictions

Summary

Back-up

To leading-order in α_s

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Momentum imbalance

Predictions

Summary

Back-up

Momentum imbalance distributions in p p et A A collisions to probe fragmentation functions at LHC

[Wang, Huang, Sarcevic 96] [FA, Aurenche, Belghobsi, Guillet 04]

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Momentum imbalance

Predictions

Summary

Back-up

- Reminiscent of the fragmentation functions
- The larger the $p_{\perp_{\gamma}}^{\mathrm{cut}}$ the better

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Momentum imbalance

Predictions

Summary

Back-up

- Reminiscent of the fragmentation functions
- The larger the $p_{\perp_{\gamma}}^{\mathrm{cut}}$ the better

Summary

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Summary

Summary

Back-up

Multi-purpose prompt photons

- Isolated photons in p A collisions
 - efficient probe of gluon shadowing
 - $\bullet \ R_{\scriptscriptstyle G}/R_{\scriptscriptstyle F_2}$ accessible without p p data at 8.8 TeV
- Inclusive photons in A A collisions
 - interplay of shadowing and (possible) energy loss effects
 - ◆ significant quenching at low p_⊥ at LHC
- Photon-tagged correlations
 - provide interesting constraints on (medium) fragmentation functions

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Pion quenching

Back-up

Pion quenching

Outline

Isolated photons in p A

Inclusive photons in A A

Photon-tagged correlations

Summary

Back-up

Pion quenching

