Dileptons at LHC

Hendrik van Hees

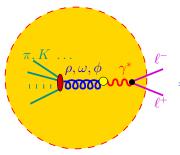
Texas A&M University

June 2, 2007

with Ralf Rapp

Outline

Electromagnetic probes in heavy-ion collisions


- direct probes for in-medium properties of partons and hadrons (negligible final-state interactions)
- emitted from all stages of the produced medium
- ▶ related to fundamental properties of QCD: chiral phase transition

Theoretical Framework

- ▶ Dilepton rate and electromagnetic current-current correlator
- sources from all stages of the medium (need fireball evolution!)
 - ► thermal radiation from hot/dense hadron gas ⇒ hadronic many-body theory
 - thermal radiation from quark-gluon plasma via HTL-improved pQCD
 - correlated open-charm decays
 - Drell Yan

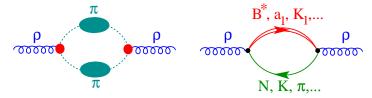
Predictions for LHC

Electromagnetic probes in heavy-ion collisions

- ▶ hot and dense hadronic medium Low-mass dileptons from ρ, ω, ϕ decays
- no strong final-state interactions
- ⇒ direct probe of in-medium spectral properties of vector mesons
- ▶ at earlier hotter stages: thermal radiation from QGP
- experimental result: enhancement of dilepton rates around and below the ρ , ω -mass region compared to expectations from pp collisions
- attributed to medium effects on vector-meson properties

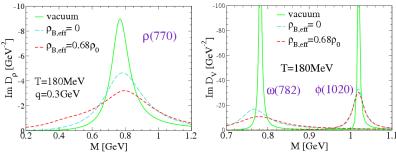
Vector Mesons and electromagnetic Probes

b dilepton thermal emission rates given by electromagnetic-current-correlation function $(J_{\mu}^{\rm QCD} = \sum_f Q_f \bar{\psi}_f \gamma_{\mu} \psi_f)$ $\Pi_{\mu\nu}^{\rm ret}(q) = \int {\rm d}^4 x \exp({\rm i} q \cdot x) \Theta(x^0) \left< J_{\mu}(0) J_{\nu}(x) \right>_T$

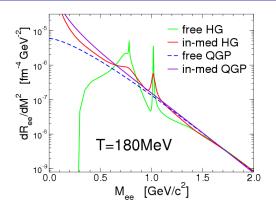

- correlators
 - ▶ in hadronic phase from effective hadronic models
 - in QGP phase from hard-thermal loop improved $q\bar{q} \rightarrow \ell^+\ell^-$

 $\frac{\mathrm{d}N_{\ell^+\ell^-}}{\mathrm{d}^4 r \mathrm{d}^4 g} = -\frac{\alpha_{\mathsf{em}}^2}{3a^2 \pi^3} \Phi_{\ell^+\ell^-}(q^2) g^{\mu\nu} \operatorname{Im} \left. \Pi_{\mu\nu}^{(\mathsf{ret})}(q) \right|_{a^2 = M^2} f_B(q_0)$

directly related to chiral symmetry of QCD

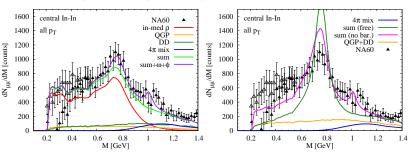

Hadronic Many-Body Theory (HMBT)

- Phenomenological HMBT [Chanfray et al, Herrmann et al, Rapp et al, ...] for vector mesons; constrained by decay widths, vacuum π-form factor, photo-absorption on nucleon and nuclei
- $\pi\pi$ interactions and baryonic excitations

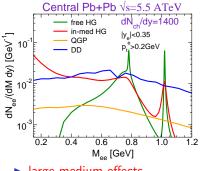

- real parts of retarded selfenergy tend to cancel ⇒ small mass shifts
- ▶ imaginary parts always negative ⇒ large broadening of spectra
- ► Anti-/Baryons important even at RHIC and LHC (CP invariance of strong interactions)
- ▶ $M \ge 1$: onset of 4-pion continuum, possibly enhanced by chiral mixing: $\Pi_V = (1 \epsilon)\Pi_V^{(0)} + \epsilon\Pi_A^{(0)}$

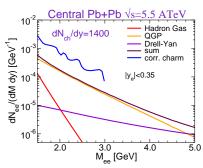
In-medium spectral functions and baryon effects

- ▶ baryon effects important $\leftrightarrow N_B + N_{\bar{B}}$ relevant (not $N_B N_{\bar{B}}$)
 - ► large contribution to broadening of the peak
 - ightharpoonup responsible for most of the strength at small M

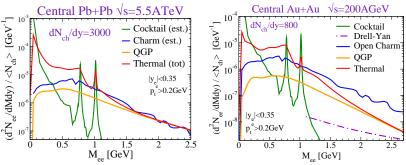

Dilepton rates: Hadron gas vs. QGP

- ▶ in-medium hadron gas matches with QGP
- ightharpoonup similar results also for γ rates
- "quark-hadron duality"?


Dilepton-access spectrum and baryon effects


- convolute rate with fireball evolution
- isentropic expansion determines $T(\tau)$, $\mu_B(\tau)$, $\mu_\pi(\tau)$, . . .
- ightharpoonup total entropy determined by number of charged particles $(\mathrm{d}N/dy)$
- initial temperature depends on plasma formation time

- comparison with dimuon spectra in 158 AGeV-In-In collisions from NA60 (HvH, R. Rapp, PRL 97, 102301 (2006))
- \triangleright no baryons: not enough broadening, lack of strength below ρ peak


Predictions for LHC

- large medium effects
- QGP subleading also at LHC
- ► Correlated open-charm decays ($\sigma_c^{\text{LHC}} = 5 \text{ mb}$)
 - comparable with thermal radiation from hadron gas
 - energy loss?
 - open-bottom decays?

LHC vs. RHIC

- \blacktriangleright at higher $\mathrm{d}N/\mathrm{d}y$ thermal radiation from hadron gas dominant for $M\lesssim 1~\mathrm{GeV}$
- for $M \gtrsim 1$ GeV: $D\bar{D}$ comparable (but no energy loss considered!)

Conclusions

- low-mass dileptons sensitive to fundamental principles of QCD (restoration of chiral symmetry)
- ► Hadronic many-body theory + HTL-improved pQCD for QGP
 - ▶ importance of baryon effects (not $n_B n_{\bar{B}}$ but $n_B + n_{\bar{B}}$ relevant)
 - "Quark-Hadron Duality"?
- ► Electromagnetic probes at LHC
 - relatively stronger thermal radiation from QGP than at RHIC
 - ▶ thermal signal \leftrightarrow correlated $D\bar{D}$ ($B\bar{B}$?)
 - heavy-quark energy loss